...
首页> 外文期刊>Acta biomaterialia >Angle-ply biomaterial scaffold for annulus fibrosus repair replicates native tissue mechanical properties, restores spinal kinematics, and supports cell viability
【24h】

Angle-ply biomaterial scaffold for annulus fibrosus repair replicates native tissue mechanical properties, restores spinal kinematics, and supports cell viability

机译:用于环形纤维术修复的角度纤维材料支架重复了天然组织机械性能,恢复脊柱运动学,并支持细胞活力

获取原文
获取原文并翻译 | 示例

摘要

Annulus fibrosus (AF) damage commonly occurs due to intervertebral disc (IVD) degeneration/herniation. The dynamic mechanical role of the AF is essential for proper IVD function and thus it is imperative that biomaterials developed to repair the AF withstand the mechanical rigors of the native tissue. Furthermore, these biomaterials must resist accelerated degradation within the proteolytic environment of degenerate IVDs while supporting integration with host tissue. We have previously reported a novel approach for developing collagen-based, multi-laminate AF repair patches (AFRPs) that mimic the angle-ply architecture and basic tensile properties of the human AF. Herein, we further evaluate AFRPs for their: tensile fatigue and impact burst strength, IVD attachment strength, and contribution to functional spinal unit (FSU) kinematics following IVD repair. Additionally, AFRP resistance to collagenase degradation and cytocompatibility were assessed following chemical crosslinking. In summary, AFRPs demonstrated enhanced durability at high applied stress amplitudes compared to human AF and withstood radially-directed biaxial stresses commonly borne by the native tissue prior to failure/detachment from IVDs. Moreover, FSUs repaired with AFRPs and nucleus pulposus (NP) surrogates had their axial kinematic parameters restored to intact levels. Finally, carbodiimide crosslinked AFRPs resisted accelerated collagenase digestion without detrimentally effecting AFRP tensile properties or cytocompatibility. Taken together, AFRPs demonstrate the mechanical robustness and enzymatic stability required for implantation into the damaged/degenerate IVD while supporting AF cell infiltration and viability.
机译:由于椎间盘(IVD)变性/遍历,常见地发生环状纤维(AF)损伤。 AF的动态机械作用对于适当的IVD函数至关重要,因此必须迫切地开发的生物材料来修复AF,可承受天然组织的机械严格。此外,这些生物材料必须在退化IVDS的蛋白水解环境中抵抗加速降解,同时支持与宿主组织的整合。我们此前报道了一种新的用于开发基于胶原的多层压件AF修复贴片(AFRP)的新方法,其模仿人AF的角度架构和基本拉伸性质。在此,我们进一步评估了其:拉伸疲劳和冲击突发强度,IVD附着强度和对IVD修复后功能性脊柱单元(FSU)运动学的贡献。另外,在化学交联后评估了对胶原酶降解和细胞相容性的AF1P抗性。总之,与人AF相比,AFRPS在高施加的应力幅度下表现出增强的耐久性,并且在从IVDS失败/脱离之前,通常由天然组织承载的径向导向的双轴应力。此外,用AFRPS和髓核(NP)替代品修复的FSUS恢复完整水平的轴向运动参数。最后,碳二亚胺交联AFRPS抵抗加速的胶原酶消化,而不会损害AFRP拉伸性能或细胞组分。在一起,AFRPS证明了植入损坏/退化IVD所需的机械稳健和酶促稳定性,同时支持AF细胞浸润和可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号