首页> 外文期刊>Acta biomaterialia >Engineering mechanical gradients in next generation biomaterials - Lessons learned from medical textile design
【24h】

Engineering mechanical gradients in next generation biomaterials - Lessons learned from medical textile design

机译:下一代生物材料中的工程机械梯度 - 从医用纺织设计中了解的经验教训

获取原文
获取原文并翻译 | 示例
           

摘要

Nonwoven and textile membranes have been applied both externally and internally to prescribe boundary conditions for medical conditions as diverse as oedema and tissue defects. Incorporation of mechanical gradients in next generation medical membrane design offers great potential to enhance function in a dynamic, physiological context. Yet the gradient properties and resulting mechanical performance of current membranes are not well described. To bridge this knowledge gap, we tested and compared the mechanical properties of bounding membranes used in both external (compression sleeves for oedema, exercise bands) and internal (surgical membranes) physiological contexts. We showed that anisotropic compression garment textiles, isotropic exercise bands and surgical membranes exhibit similar ranges of resistance to tension under physiologic strains. However, their mechanical gradients and resulting stress-strain relationships show differences in work capacity and energy expenditure. Exercise bands' moduli of elasticity and respective thicknesses allow for controlled, incremental increases in loading to facilitate healing as injured tissues return to normal structure and function. In contrast, the gradients intrinsic to compression sleeve design exhibit gaps in the middle range (1-5 N) of physiological strains and also inconsistencies along the length of the sleeve, resulting in less than optimal performance of these devices. These current shortcomings in compression textile and garment design may be addressed in the future through implementation of novel approaches. For example, patterns, fibre compositions, and fibre anisotropy can be incorporated into biomaterial design to achieve seamless mechanical gradients in structure and resulting dynamic function, which would be particularly useful in physiological contexts. These concepts can be applied further to biomaterial design to deliver pressure gradients during movement of oedematous limbs (compression garments) and facilitate transport of molecules and cells during tissue genesis within tissue defects (surgical membranes).
机译:非织造织物和纺织膜已经在外部和内部应用,以规定医疗条件的边界条件,如水肿和组织缺陷。在下一代医学膜设计中将机械梯度纳入具有巨大潜力,可以在动态,生理背景下提高功能。然而,梯度性质和所得到的电流膜的机械性能也没有很好地描述。为了弥合这种知识差距,我们测试并比较了外部(水肿,运动带)和内部(手术膜)生理环境中的外部(压缩套管)和内部(手术膜)的机械性能。我们表明各向异性压缩服装纺织品,各向同性的运动带和外科膜在生理菌株下表现出与张力相似的抗性范围。然而,它们的机械梯度和产生的应力 - 应变关系显示了工作能力和能源消耗的差异。运动带的弹性模态和各自的厚度允许受到控制,加载中的增量增加,以便于愈合,因为受伤的组织恢复正常结构和功能。相反,压缩套筒设计的梯度是在生理菌株的中间范围(1-5n)中的间隙,也沿着套筒的长度不一致,导致这些装置的最佳性能。这些目前在压缩纺织和服装设计中的缺点可以在未来通过实施新颖的方法来解决。例如,模式,纤维组合物和纤维各向异性可以掺入生物材料设计中,以实现结构的无缝机械梯度并产生动态功能,这在生理环境中特别有用。这些概念可以进一步应用于生物材料设计,以在OEDEMATOUS四肢(压缩服装)的运动期间输送压力梯度,并促进组织缺陷内的组织成因(手术膜)期间分子和细胞的转运。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号