...
首页> 外文期刊>Acta biomaterialia >Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering
【24h】

Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering

机译:用于软骨组织工程的弹性聚(酯)氨基甲酸酯的添加剂制造

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Although a growing knowledge on the field of tissue engineering of articular cartilage exists, reconstruction or in-vitro growth of functional hyaline tissue still represents an unmet challenge. Despite the simplicity of the tissue in terms of cell population and absence of innervation and vascularization, the outstanding mechanical properties of articular cartilage, which are the result of the specificity of its extra cellular matrix (ECM), are difficult to mimic. Most importantly, controlling the differentiation state or phenotype of chondrocytes, which are responsible of the deposition of this specialized ECM. represents a milestone in the regeneration of native articular cartilage. In this study, we fabricated fused deposition modelled (FDM) scaffolds with different pore sizes and architectures from an elastic and biodegradable poly(ester)urethane (PEU) with mechanical properties that can be modulated by design, and that ranged the elasticity of articular cartilage. Cell culture in additive manufactured 3D scaffolds exceeded the chondrogenic potential of the gold-standard pellet culture. In-vitro cell culture studies demonstrated the intrinsic potential of elastic (PEU) to drive the re-differentiation of de-differentiated chondrocytes when cultured in-vitro, in differentiation or basal media, better than pellet cultures. The formation of neo-tissue was assessed as a high deposition of GAGs and fibrillar collagen II, and a high expression of typical chondrogenic markers. Moreover, the collagen II / collagen I ratio commonly used to evaluate the differentiation state of chondrocytes (ratio > 1 being chondrocytes and, ratio < 0 being de-differentiated chondrocytes) was higher than 5.
机译:尽管存在对关节软骨的组织工程领域的日益增长的了解,但功能性透明组织的重建或体外生长仍然是未满足的挑战。尽管在细胞群方面具有简单的组织并且没有支配和血管形成,但关节软骨的出色机械性能,这是其额外细胞基质(ECM)的特异性的结果难以模仿。最重要的是,控制软骨细胞的分化状态或表型,其负责该专用ECM的沉积。代表原生关节软骨的再生中的里程碑。在这项研究中,我们用来自弹性和可生物降解的聚(酯)氨基甲酸酯(PEU)的不同孔径和构造的熔融沉积模型(FDM)支架,其具有可通过设计调节的机械性能,并且该间关节软骨的弹性。添加剂制造的3D支架中的细胞培养物超过了金标准颗粒培养的软骨内潜力。体外细胞培养研究表明了弹性(PEU)的内在电位,以在体外培养,分化或基础培养基中培养的脱差异化的软骨细胞的重新分化,比颗粒培养物更好。将新组织的形成被评估为高沉积的GAG和Fibrillar胶原II,以及典型的软骨内标记物的高表达。此外,常用于评价软骨细胞的分化状态的胶原II /胶原I比率(比率> 1是软骨细胞,比率<0是脱差的软骨细胞)高于5。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号