首页> 外文期刊>Acta Mechanica >Stochastic shape functions and stochastic strain-displacement matrix for a stochastic finite element stiffness matrix
【24h】

Stochastic shape functions and stochastic strain-displacement matrix for a stochastic finite element stiffness matrix

机译:随机有限元刚度矩阵的随机形状函数和随机应变位移矩阵

获取原文
获取原文并翻译 | 示例
           

摘要

For conventional finite element problems, element geometry is adequate to determine shape functions. However, to account for secondary effects due to material randomness, conventional shape functions need to be modified according to the spatial fluctuation of constitutive variables in each Monte Carlo sample. This paper develops a method to compute stochastic shape functions based on local equilibrium criteria when each simulated sample complies with the same order of accuracy as designated for the associated deterministic problem. The resulting stochastic stiffness matrix is then calculated via the stochastic strain-displacement matrix based on those stochastic shape functions. In order to attain high accuracy, which is the characteristic of the boundary element method, rational polynomial shape functions are used in this paper. The proposed formulation is indispensable when secondary effects (due to nano size and time scale in modern technology, fiber randomness in composites, thermodynamic interactions in biological tissues, to name a few) demand a high accuracy finite element formulation. The elasto-plastic deformation that introduces concavity motivated the numerical example elaborated here. An example of a concave quadrilateral element with spatial randomness for the modulus of elasticity is illustrated. Since isoparametric shape functions for concave quadrilaterals do not exist, the Wachspress rational polynomial shape functions with irrational terms are used. The computer algebra environment Mathematica is employed here.
机译:对于常规的有限元问题,元素的几何形状足以确定形状函数。但是,要考虑到由于材料随机性造成的次要影响,需要根据每个蒙特卡洛样本中本构变量的空间波动来修改常规形状函数。本文开发了一种方法,当每个模拟样本的准确度与相关确定性问题指定的精度相同时,可以根据局部平衡标准计算随机形状函数。然后,基于这些随机形状函数,通过随机应变-位移矩阵计算所得的随机刚度矩阵。为了获得高精度,这是边界元法的特征,本文使用有理多项式形状函数。当次要效果(由于现代技术中的纳米尺寸和时间尺度,复合材料中的纤维无规性,生物组织中的热力学相互作用,仅举几例)时,建议的配方是必不可少的。引入凹坑的弹塑性变形激励了此处阐述的数值示例。示出了具有弹性模量的空间随机性的凹四边形元件的示例。由于不存在凹四边形的等参形状函数,因此使用具有无理项的Wachspress有理多项式形状函数。这里采用了计算机代数环境Mathematica。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号