首页> 外文期刊>Cryogenics >Sloshing in microgravity
【24h】

Sloshing in microgravity

机译:微重力晃动

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The international space station provides a lowgravity environment for experiments that require very lowacceleration. The steady component of acceleration due to thegravity gradient is in the microgravity range. It is possible toachieve microgravity levels for the variable component by usingisolation racks. For experiments cooled by liquid cryogenssloshing may increase the variable acceleration at the experimentbeyond acceptable levels. Sloshing of cryogens in microgravity canbe predicted using a surface wave model. The model shouldinclude: a calculation of the shape of the unperturbed liquid –gasinterface; a listing of the normal modes and resonant frequenciesfor the container; a prediction of he amplitude of the modes inresponse to the motion of the container; and a test to detect thebreakdown of linear theory. A model is presented that containsthese components. The shape of the interface is calculated and it isfound that for most anticipated applications the interface is nearlycylindrical or spherical. Since gravity is not aligned with thesymmetry of the container, the depth of the liquid is variable.Examples are presented to show how to estimate the extent ofvariable depth and curve interface on the normal modes andresonant frequencies. Equations are derived for the dynamicinteraction of the isolation rack, the dewar and the sloshing motion.Damping is introduced by suing boundary layer theory. Randomvibration theory is applied to the incoherent component of thedriving spectrum while standard resonance formalism is used forthe coherent component. The model cannot be used if the waveamplitude becomes so large that linear theory does not apply. Aprocedure is developed to check for nonlinear difficulties. 2000Elsevier Science Ltd. All rights reserved.
机译:国际空间站为要求极低加速度的实验提供了低重力环境。由重力梯度引起的加速度的稳定分量在微重力范围内。通过使用隔离架,可以实现可变组件的微重力水平。对于由液体冷冻剂冷却的实验,晃荡可能会使实验中的可变加速度超出可接受的水平。可以使用表面波模型预测致冷剂在微重力中的晃动。该模型应包括:计算不受扰动的液-气界面的形状;容器的正常模式和共振频率的列表;预测响应于容器运动的模式振幅;以及检测线性理论崩溃的测试。提出了包含这些组件的模型。计算出界面的形状,发现对于大多数预期的应用,界面几乎是圆柱形或球形的。由于重力与容器的对称性不一致,因此液体的深度是可变的。通过实例说明如何估算正常模式和共振频率下可变深度和曲线界面的程度。推导了隔离架的动态相互作用,杜瓦瓶和晃动运动的方程式。采用边界层理论对阻尼进行了介绍。随机振动理论适用于驱动频谱的非相干分量,而标准共振形式则用于相干分量。如果波幅变得太大以至于线性理论不适用,则无法使用该模型。开发了程序以检查非线性困难。 2000 Elsevier ScienceLtd。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号