...
首页> 外文期刊>Acta Mechanica >Eshelby's tensors for plane strain and cylindrical inclusions based on a simplified strain gradient elasticity theory
【24h】

Eshelby's tensors for plane strain and cylindrical inclusions based on a simplified strain gradient elasticity theory

机译:基于简化应变梯度弹性理论的平面应变和圆柱夹杂物的埃舍尔比张量

获取原文
获取原文并翻译 | 示例
           

摘要

The Eshelby tensor for a plane strain inclusion of arbitrary cross-sectional shape is first presented in a general form, which has 15 independent non-zero components (as opposed to 36 such components for a three-dimensional inclusion of arbitrary shape). It is based on a simplified strain gradient elasticity theory that involves one material length scale parameter. The Eshelby tensor for an infinitely long cylindrical inclusion is then derived using the general form, with its components obtained in explicit (closed-form) expressions for the two regions inside and outside the inclusion for the first time based on a higher-order elasticity theory. This Eshelby tensor is separated into a classical part and a gradient part. The latter depends on the position, the inclusion size, the length scale parameter, and Poisson's ratio. As a result, the new Eshelby tensor is non-uniform even inside the cylindrical inclusion and captures the size effect. When the strain gradient effect is not considered, the gradient part vanishes and the newly obtained Eshelby tensor reduces to its counterpart based on classical elasticity. The numerical results quantitatively show that the components of the new Eshelby tensor vary with the position, the inclusion size, and the material length scale parameter, unlike their classical elasticity-based counterparts. When the inclusion radius is comparable to the material length scale parameter, it is found that the gradient part is too large to be ignored. In view of the need for homogenization analyses of fiber-reinforced composites, the volume average of the newly derived Eshelby tensor over the cylindrical inclusion is obtained in a closed form. The components of the average Eshelby tensor are observed to depend on the inclusion size: the smaller the inclusion radius, the smaller the components. However, as the inclusion size becomes sufficiently large, these components are seen to approach from below the values of their classical elasticity-based counterparts.
机译:首先以一般形式表示用于包含任意横截面形状的平面应变的Eshelby张量,该张量具有15个独立的非零分量(与用于包含任意形状的三维包含36个这样的分量相反)。它基于简化的应变梯度弹性理论,其中涉及一个材料长度比例参数。然后使用通用形式导出无限长圆柱夹杂物的Eshelby张量,并基于高阶弹性理论首次以包含在其内部和外部的两个区域的显式(闭合形式)表达式获得其分量。此Eshelby张量分为经典部分和梯度部分。后者取决于位置,夹杂物大小,长度比例参数和泊松比。结果,即使在圆柱形夹杂物内部,新的Eshelby张量也不均匀,并捕获了尺寸效应。当不考虑应变梯度效应时,基于经典弹性,梯度部分消失,新获得的Eshelby张量减小到其对应值。数值结果定量地表明,新的Eshelby张量的分量随位置,夹杂物大小和材料长度比例参数而变化,这与传统的基于弹性的对应物不同。当夹杂物半径与材料长度比例参数相当时,发现梯度部分太大而不能忽略。鉴于需要对纤维增强复合材料进行均质分析,因此以封闭形式获得了新生成的Eshelby张量在圆柱形夹杂物上的体积平均值。观察到平均Eshelby张量的分量取决于夹杂物的大小:夹杂物半径越小,分量越小。但是,随着夹杂物尺寸变得足够大,可以看到这些组分从其基于经典弹性的对应物的值以下接近。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号