...
首页> 外文期刊>Acta Mechanica >Modeling of strengthening and softening in inelastic nanocrystalline materials with reference to the triple junction and grain boundaries using strain gradient plasticity
【24h】

Modeling of strengthening and softening in inelastic nanocrystalline materials with reference to the triple junction and grain boundaries using strain gradient plasticity

机译:使用应变梯度可塑性参照三重结和晶界对非弹性纳米晶体材料的增强和软化建模

获取原文
获取原文并翻译 | 示例

摘要

The work presented here provides a generalized structure for modeling polycrystals from micro-to nano-size range. The polycrystal structure is defined in terms of the grain core, the grain boundary and the triple junction regions with their corresponding volume fractions. Depending on the size of the crystal from micro to nano, different types of analyses are used for the respective different regions of the polycrystal. The analyses encompass local and nonlocal continuum or crystal plasticity. Depending on the physics of the region dislocation-based inelastic deformation and/or slip/separation is used to characterize the behavior of the material. The analyses incorporate interfacial energy with grain boundary sliding and grain boundary separation. Certain state variables are appropriately decomposed into energetic and dissipative components to accurately describe the size effects. This new formulation does not only provide the internal interface energies but also introduces two additional internal state variables for the internal surfaces (contact surfaces). One of these new state variables measures tangential sliding between the grain boundaries and the other measures the respective separation. Additional entropy production is introduced due to the internal subsurface and contacting surface. A multilevel Mori-Tanaka averaging scheme is introduced in order to obtain the effective properties of the heterogeneous crystalline structure and to predict the inelastic response of a nanocrystalline material. The inverse Hall-Petch effect is also demonstrated. The formulation presented here is more general, and it is not limited to either polycrystalline-or nanocrystalline-structured materials. However, for more elaborate solution of problems, a finite element approach needs to be developed.
机译:本文介绍的工作提供了一种通用的结构,可用于建模从微米级到纳米级的多晶。根据晶核,晶界和三重结区域及其相应的体积分数来定义多晶结构。根据晶体的大小,从微米到纳米,对多晶体的各个不同区域使用不同类型的分析。分析包括局部和非局部连续体或晶体可塑性。根据区域的物理原理,基于位错的非弹性变形和/或滑移/分离被用来表征材料的性能。这些分析将界面能与晶界滑动和晶界分离结合在一起。某些状态变量被适当地分解为能量和耗散分量,以准确地描述大小效应。这种新配方不仅提供了内部界面能,而且还为内表面(接触表面)引入了两个附加的内部状态变量。这些新的状态变量之一用于测量晶界之间的切向滑动,另一个用于测量相应的间距。由于内部下表面和接触表面,引入了额外的熵产生。为了获得异质晶体结构的有效特性并预测纳米晶体材料的非弹性响应,引入了多级Mori-Tanaka平均方案。还演示了逆霍尔效应。这里介绍的配方更一般,不限于多晶或纳米晶结构的材料。但是,为了更详尽地解决问题,需要开发一种有限元方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号