...
首页> 外文期刊>Cement & concrete composites >Alkali resistant glass fiber reinforced concrete: Pull-out investigation of interphase behavior under quasi-static and high rate loading
【24h】

Alkali resistant glass fiber reinforced concrete: Pull-out investigation of interphase behavior under quasi-static and high rate loading

机译:耐碱性玻璃纤维增强混凝土:在准静态和高速率荷载下拔出相互作用行为的研究

获取原文
获取原文并翻译 | 示例

摘要

AbstractSingle fiber model composites of alkali resistant (AR-) glass fibers and a cementitious matrix were used to investigate the pull-out behavior under quasi-static and high speed loading. For fundamental understanding of the effect of the fiber/matrix interphase on the pull-out behavior under impact, differently sized AR-glass fibers were spun. As a first approach, the fiber surface was modified in oppositional ways using the following sizings: one based on a polypropylene (PP, weak) film former and another one based on a styrene-butadiene (strong) film former. Additionally, some of the fibers were kept unsized for comparison. A new ‘alternative’ approach was employed to determine the local interfacial shear strength,τd, and the critical energy release rate,Gic, from the reliable force values of the force–displacement curves. For all fiber surface states, theτdandGicvalues for high loading rates appeared to be considerably greater than the corresponding parameters for a quasi-static pull-out test. This can be explained using a model based on Zhurkov's kinetic (thermal fluctuation) theory of the strength of solids, which also enabled to estimate the apparent activation energy for interfacial debonding. Both quasi-static and high-rate pull-out tests on this fiber/matrix pair can be considered as ‘normal’ (slip-dependent interfacial friction was not observed) and their results can be evaluated using the described approaches. The interfacial frictional stress reduced at high-rate pull-out tests for all systems. One of the possible mechanisms responsible for this behavior may be the smoothing of surface asperities upon debonding. As revealed by AFM of fracture surfaces, in the case of unsized fibers or those with the ‘strong’ styrene–butadiene sizing, the interfacial crack occurs through surface layers of the matrix material adjacent to the fiber, but it may propagate through the weak interface when the fiber is sized with ‘weak’ PP film former.]]>
机译:<![CDATA [ 抽象 使用碱性耐玻璃纤维的单纤维模型复合材料和胶粘基质的单纤维模型复合材料来研究拉动在准静态和高速加载下的行为。对于对纤维/基质差异对冲击下的拉出行为的影响的基本理解,不同尺寸的Ar玻璃纤维被旋转。作为第一种方法,使用以下暗示以与苯乙烯 - 丁二烯(强)薄膜成形剂基于聚丙烯(PP,弱)薄膜前的纤维(PP,弱)薄膜前方的纤维表面以与反对方式进行修饰。另外,一些纤维被未化以进行比较。采用新的“替代”方法来确定局部界面剪切强度 τ d < / mml:mrow> ,以及临界能量释放率 g ic ,从力 - 位移曲线的可靠力值。对于所有光纤表面状态, τ D g ic 高加载率的值出现了远远大于准静态拉出测试的相应参数。这可以使用基于Zhurkov的动力学(热波动)理论的模型来解释固体强度的理论,这也能够估计用于界面剥离的表观激活能量。该纤维/基质对的准静态和高速拉出测试都可以被认为是“正常”(未观察到的滑动依赖性界面摩擦),并且它们可以使用所描述的方法进行评估它们的结果。界面摩擦力应力降低了所有系统的高速拉出测试。负责这种行为的可能机制之一可能是在剥离时表面粗糙的平滑。如断裂表面的AFM透露,在未定义的纤维或具有“强”苯乙烯 - 丁二烯尺寸的那些的情况下,界面裂缝通过与纤维相邻的基质材料的表面层发生,但是它可以通过弱界面传播当光纤用“弱”PP胶片前方尺寸时。 ]]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号