...
首页> 外文期刊>Contributions to Mineralogy and Petrology >Apatite compositions and groundmass mineralogy record divergent melt/fluid evolution trajectories in coherent kimberlites caused by differing emplacement mechanisms
【24h】

Apatite compositions and groundmass mineralogy record divergent melt/fluid evolution trajectories in coherent kimberlites caused by differing emplacement mechanisms

机译:磷灰石组合物和仿古矿物学记录不同施加机制引起的相干金伯利玻璃中的发散熔体/流体演化轨迹

获取原文
获取原文并翻译 | 示例

摘要

Kimberlites are pipe-like igneous bodies, consisting of a pyroclastic crater and diatreme, commonly underlain by coherent root-zone rocks, and with associated dyke/sill complexes. The processes that control the different modes of coherent kimberlite emplacement remain uncertain. In addition, late evolution of kimberlite melts during emplacement into the upper crust remains poorly constrained. Therefore, it is unclear whether there is a link between melt composition/evolution and the emplacement mechanism of coherent kimberlites (i.e. planar dykes/sills vs. irregular bodies in the root zone). An absence of comparative studies on late-stage magmatic phases across the different emplacement modes of coherent kimberlite from the same locality hamper resolution of these issues. Therefore, we report petrographic and mineral chemical data for groundmass apatite in samples of dyke, sill, and root-zone kimberlites from the Kimberley cluster (South Africa). Early crystallised phases (olivine, spinel, Mg-ilmenite) in dyke/sill and root-zone kimberlites have indistinguishable compositions, and hence crystallised from similar primitive melts. Conversely, apatite compositions are generally distinct in dyke/sill (low Sr, high and variable Si) and root-zone kimberlites (high and variable Sr, low Si). The Si enrichment of apatite in dykes/sills is attributed to the coupled incorporation of CO32- and SiO44- for PO43-, reflecting higher CO2 contents in their parental melts, and potentially higher Si contents due to the preferential crystallisation of carbonates over mica/monticellite. The low Sr contents of apatite in dyke/sill kimberlites reflect equilibrium with a (kimberlite) melt (i.e. D-Sr is close to unity for carbonate and silicate melts), whereas the higher Sr contents of apatite in root-zone kimberlites require crystallisation from, or overprinting by a H2O +/- CO2 fluid (significantly higher D-Sr). The relative enrichment of CO2 in kimberlite dykes/sills is evident from the abundance of carbonates, the presence of mesostasis dolomite and calcite phenocrysts in some samples, and concomitant reduced proportions of other groundmass phases (e.g. serpentine, mica, monticellite). During late alteration of kimberlite dykes/sills, monticellite is typically replaced by carbonates, whereas olivine and pleonaste are relatively stable, indicating the melts which form dykes/sills evolve to higher CO2/H2O ratios. It is unlikely that these two distinct evolutionary paths were caused by crustal contamination before or during near surface magma emplacement, because crustal assimilation is not recorded in the O and Sr isotopic composition of late crystallising olivine rinds or carbonates, respectively. We suggest that higher concentrations of CO2 are retained in kimberlite dykes/sills due to higher confining pressures (i.e. lack of breakthrough to the surface). In contrast, exsolution of CO2 from root-zone kimberlites increased melt H2O/CO2 ratios and promoted the crystallisation of mica and monticellite at the expense of dolomite and calcite. Apatite compositions have the potential to aid in the discrimination of kimberlites from lamproites (higher LREE, Sr, F, and S, lower Si contents) and carbonatites (higher LREE, F, Cl and S, lower Fe contents).
机译:金伯莱特是管状的发泡体,由吡焦陨的火山口和呕吐,通常由相干的根部区域岩石和相关的堤坝/门槛复合物组成。控制相干kimberlite施加的不同模式的过程仍然不确定。此外,在施加到上层地壳期间金伯拉特的晚期演变仍然受到严重的限制。因此,目前尚不清楚熔体组合物/进化与连贯金伯利铅的施加机制之间是否存在链接(即根区中的平面染料/速率与不规则体)。在这些问题的同一地区哈伯拉特相干kimberlite中不同施加模式的缺失对阶段岩浆阶段的比较研究。因此,我们向堤防,窗台和根区金伯利岩样品(南非)的样品中向普通磷灰石报告岩手和矿物化学数据。在堤坝/岩石和根区金霉菌中的早期结晶相(橄榄石,尖晶石,Mg-Ilmenite)具有嵌合的组合物,因此从类似的原始熔体中结晶。相反,磷灰石组合物通常在Dyke / Sill(低Sr,高和可变Si)和根区金伯拉特(高可变SR,低Si)中不同。堤坝/岩石中磷灰石的Si富集归因于Co32和SiO 44-对于PO43的掺入,反映了父母融化中的更高的CO 2含量,并且由于云母/蒙太岛的碳酸酯优先结晶而导致的Si含量较高。堤坝中磷灰石的低Sr含量反映了熔融(即D-Sr的平衡(即D-Sr接近碳酸盐和硅酸盐熔体的统一),而根区金伯利特中磷灰石的较高SR含量需要晶体化或者由H2O +/- CO2流体(D-SR显着更高)叠印。从碳酸盐的丰度,在一些样品中的丰度中,在碳酸盐的丰度中,CO 2中的相对富集是显而易见的,在一些样品中,伴随着核苷酸的白云石和方解石苯基晶体的存在,并伴随着其他仿生阶段的比例(例如蛇纹石,云母,蒙脱石)。在Kimberlite Dykes / Sills的后期改变期间,Monticellite通常由碳酸盐替换,而橄榄石和渗透率相对稳定,表明形成堤坝/窗台的熔体进化到更高的CO 2 / H2O比率。这两个不同的进化路径不太可能是由在表面岩浆施加近端或近端的地壳污染引起的,因为分别在晚结晶橄榄石的o和Sr同位素组合物中没有记录出壳同化。我们认为,由于更高的压力压力相反,CO 2从根区金霉素的exolution增加熔融H2O / CO2比率,并促进了云母和铌铁矿石和方解石牺牲的云母和蒙育岩的结晶。磷灰石组合物有可能有助于从Lamproites(较高的LREE,SR,F和S,低级Si含量)和碳酸盐粘物(较高的LREE,F,Cl和S,下部Fe含量)辨别Kimberlites的辨别。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号