首页> 外文期刊>Computational particle mechanics >Grains3D, a flexible DEM approach for particles of arbitrary convex shapePart III: extension to non-convex particles modelled as glued convex particles
【24h】

Grains3D, a flexible DEM approach for particles of arbitrary convex shapePart III: extension to non-convex particles modelled as glued convex particles

机译:谷物3D,一种柔性DEM方法,用于任意凸形Shapepart III的粒子:扩展为胶合凸粒子的非凸粒子

获取原文
获取原文并翻译 | 示例
       

摘要

Large-scale numerical simulation using the discrete element method (DEM) contributes to improving our understanding of granular flow dynamics involved in many industrial processes and geophysical flows. In industry, it leads to an enhanced design and an overall optimization of the corresponding equipment and process. Most of the DEM simulations in the literature have been performed using spherical particles. A limited number of studies dealt with non-spherical particles, even less with non-convex particles. Even convex bodies do not always represent the real shape of certain particles. In fact, more complex-shaped particles are found in many industrial applications, for example, catalytic pellets in chemical reactors or crushed glass debris in recycling processes. In Grains3D-Part I (Wachs et al. in Powder Technol 224:374-389, 2012), we addressed the problem of convex shape in granular simulations, while in Grains3D-Part II (Rakotonirina and Wachs in Powder Technol 324:18-35, 2018), we suggested a simple though efficient parallel strategy to compute systems with up to a few hundreds of millions of particles. The aim of the present study is to extend even further the modelling capabilities of Grains3D towards non-convex shapes, as a tool to examine the flow dynamics of granular media made of non-convex particles. Our strategy is based on decomposing a non-convex-shaped particle into a set of convex bodies, called elementary components. We call our method glued or clumped convex method, as an extension of the popular glued sphere method. Essentially, a non-convex particle is constructed as a cluster of convex particles, called elementary components. At the level of these elementary components of a glued convex particle, we employ the same contact detection strategy based on a Gilbert-Johnson-Keerthi algorithm and a linked-cell spatial sorting that accelerates the resolution of the contact, that we introduced in [39]. Our glued convex model is implemented as a new module of our code Grains3D and is therefore automatically fully parallel. We illustrate the new modelling capabilities of Grains3D in two test cases: (1) the filling of a container and (2) the flow dynamics in a rotating drum.
机译:使用离散元素法(DEM)的大规模数值模拟有助于提高我们对许多工业过程中涉及的粒度流动动态和地球物理流动的理解。在工业中,它导致了增强的设计和整体优化相应的设备和过程。使用球形颗粒进行了文献中的大多数DEM模拟。有限数量的研究涉及非球形颗粒,甚至没有非凸颗粒。甚至凸起的身体并不总是代表某些颗粒的真实形状。实际上,在许多工业应用中发现了更复杂的颗粒,例如化学反应器中的催化颗粒或回收过程中的碎玻璃碎片。在谷物3d-part i(Wachs等人。在粉末Technol 224:374-389,2012)中,我们解决了粒状模拟中的凸形形状的问题,而在谷物3d-part II(Rakotonirina和Wachs在粉末Technol 324:18- 35,2018),我们建议简单虽然有效的平行策略,以计算高达数亿粒子的系统。本研究的目的是进一步延伸谷物3d朝向非凸形形状的建模能力,作为检查由非凸粒子制成的粒状介质的流动动态的工具。我们的策略基于将非凸形颗粒分解成一组凸起,称为基本组件。我们称之为胶合或聚集凸的方法,作为流行的胶合球法的延伸。基本上,非凸颗粒构造为凸颗粒的簇,称为基本组分。在胶合凸粒子的这些基本组件的水平上,我们采用了基于Gilbert-Johnson-Keerthi算法的相同的接触检测策略和链接 - 单元空间分类,从而加速了我们在[39的联系人的分辨率]。我们的胶合凸模型实现为代码谷物3d的新模块,因此自动完全并行。我们说明了两种测试用例中的谷物3d的新建模能力:(1)容器和(2)旋转鼓中的流动动力学填充。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号