...
首页> 外文期刊>Computational Mechanics: Solids, Fluids, Fracture Transport Phenomena and Variational Methods >Application of deep learning neural network to identify collision load conditions based on permanent plastic deformation of shell structures
【24h】

Application of deep learning neural network to identify collision load conditions based on permanent plastic deformation of shell structures

机译:深度学习神经网络在壳体结构永塑动变形的基础上识别碰撞载荷条件的应用

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we have developed a novel deep learning inverse solution or identification method to determine and identify the impact load conditions of shell structures based on their final state of damage or inelastic deformation. This artificial intelligence approach offers a practical solution to solve the inverse problem of engineering failure analysis based on final material and structure damage state and permanent plastic deformation. More precisely, the machine learning inverse problem solver may provide a practical solution to characterize failure load parameters and conditions based on the final permanent plastic deformation distribution of the shell structure that is under examination. In this work, we have demonstrated that the proposed deep learning method can accurately identify a practically unique static loading condition as well as the impact dynamic loading condition for a hemispherical shell structure based the permanent plastic deformation after the impact event as the forensic signatures. The data-driven based method developed in this work may provide a powerful tool for forensically diagnosing, determining, and identifying damage loading conditions for engineering structures in various accidental failure events, such as car crashes, pressure vessel failure, or thin-walled infrastructure structure collapses. The machine learning inverse problem solver developed here in this work may have potential impacts on general forensic material and structure failure analysis based on final permanent plastic deformations.
机译:在这项工作中,我们开发了一种新颖的深度学习逆解决方案或识别方法,以基于其最终损坏或无弹性变形的最终状态来确定和识别壳结构的冲击载荷条件。这种人工智能方法提供了一种实用的解决方案,可以根据最终材料和结构损伤状态和永久性变形来解决工程故障分析的逆问题。更确切地说,机器学习逆问题求解器可以提供实际解决方案,以表征故障负载参数和基于正在检查的壳结构的最终永久性塑性变形分布。在这项工作中,我们已经证明,所提出的深度学习方法可以准确地识别实际上独特的静电负载条件以及基于冲击事件后的永久性塑性变形作为法医特征后的永久性塑性变形的影响动态负载条件。在本工作中开发的基于数据驱动的方法可以提供一种强大的工具,用于对各种意外故障事件(如车祸,压力容器故障或薄壁基础设施结构)中的工程结构中的工程结构造成损伤装载条件的强大工具。崩溃。本工作中开发的机器学习逆问题求解器可能对基于最终永久性塑性变形的一般法医材料和结构故障分析产生潜在的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号