首页> 外文期刊>Combustion, Explosion, and Shock Waves >Shock wave induced primary thermal fragmentation of coal particles
【24h】

Shock wave induced primary thermal fragmentation of coal particles

机译:冲击波诱导煤颗粒的主要热碎片

获取原文
获取原文并翻译 | 示例
           

摘要

Coal particles when subjected to shock waves can undergo rapid fragmentation, pyrolysis, and combustion, causing enhanced process intensity and efficiency. Particle fragmentation plays a crucial role in this process. Exposure of coal particles to a shock wave is modelled in the present work as combined convection and radiation at the surface and conduction in the interior. Local temperatures within a coal particle and the corresponding thermal stresses are computed to study particle failure. Particle fracture is modelled by a three-parameter Weibull probability to predict the failure location and time. Simulations indicate that pulverized coal of size up to 250 mu m subjected to a shock wave for varying operational, thermal, and physical parameters can experience initial failure within 150 mu s. Particles of size d ae 50 mu m or higher wave strengths (with Mach numbers M ae 5) mostly trigger exfoliation, while interior fragmentation dominates at smaller sizes (d ae 25 mu m). An initial fracture study reveals that pulverized coal with predominant sizes d ae 100 mu m and the coal rank from lignite to bituminous coal is potentially suitable for detonation combustion in waves at Mach numbers M = 3-6. Coal particles under continuous exposure to post-shock conditions undergo recursive exfoliation until the core is 20-40 mu m, after which an interior fragmentation phase is seen until the core is about 1-3 mu m. Much finer coal particles, of the order of internal fragmenting cores, are hardly fractured due to low thermal stresses caused by rapid uniform heating. The fracture model approach for studying shock-induced combustion is validated by a reasonable match of the computed ignition delay with experiments. The fragmentation history indicates a substantial increase in the particle surface area and temperature under shock exposure, as against conventional combustion, leading to an increased order of the burning rates at the onset of ignition, which can sustain through the entire burning phase.
机译:受到冲击波时的煤颗粒可以经历快速的破碎,热解和燃烧,导致增强的工艺强度和效率。粒子碎片在这个过程中起着至关重要的作用。将煤颗粒暴露于冲击波的暴露于本作工作中,作为表面的组合对流和辐射在内部的导通和导通。计算煤颗粒内的局部温度和相应的热应力以研究颗粒衰竭。颗粒骨折由三参数Weibull概率建模以预测失败位置和时间。模拟表明,粉碎煤的尺寸高达250μm,经受冲击波的250 mu m,以改变运行,热和物理参数,可以在150亩内体验初始失败。尺寸D AE或更高波强(用马赫数M AE 5)颗粒大部分触发剥离,而内部碎片以较小的尺寸占主导地位(D AE25μm)。初始骨折研究表明,具有主要尺寸D AE 100 mu m的粉煤和从褐煤到沥青煤的煤等级可能适用于Mach数M = 3-6的波浪中的爆炸燃烧。在连续接触后抗冲击条件下的煤颗粒经历递归剥离,直至核心为20-40μm,之后看到内部碎片阶段直至核心约1-3μm。由于通过快速均匀的加热引起的低热应力,内部碎片核心的顺序更精细的煤颗粒几乎不会破裂。通过实验的计算点火延迟的合理匹配验证了用于研究冲击诱导的裂缝模型方法。碎片历史表明粒度区域和冲击曝光下的温度大幅增加,与常规燃烧导致燃烧速率的增加顺序,该燃烧率在点火开始处的燃烧速率下降,这可以通过整个燃烧阶段维持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号