...
首页> 外文期刊>Combustion theory and modelling >A scaling analysis for the evolution of small-scale turbulence eddies across premixed flames with implications on distributed combustion
【24h】

A scaling analysis for the evolution of small-scale turbulence eddies across premixed flames with implications on distributed combustion

机译:分布式燃烧影响的预混火焰中小型湍流漩涡演变的缩放分析

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we propose a physics-based scaling theory for the evolution of small-scale turbulence eddies in the unburnt mixture when they travel across the preheat zone of a premixed flame. This scaling theory is developed to explicitly account for the effects of viscous diffusion on the length and velocity scales of turbulence eddies that are smaller than the inner reaction zone thickness of a premixed flame. This scaling suggests that both the length and velocity scales of the turbulence eddies are significantly altered as they pass through the preheat zone. The applicability of the scaling is assessed using a series of detailed numerical simulations of flame-vortex interactions with finite-rate chemistry and detailed molecular transport. The scaling estimates of eddy evolution are compared to simulation predictions with reasonable agreement. The proposed scaling is then applied to estimate the required length and velocity scales of turbulence eddies in the unburnt mixture of a turbulent premixed flame to potentially create significant perturbation of the reaction zone by local mixing after passing through the preheat zone. These requirements are translated into a minimum estimated Karlovitz number (Ka) of approximately in the unburnt mixture of a turbulent premixed flame to potentially achieve distributed combustion. This estimated minimum Ka is significantly higher than the classical scaling estimate () for turbulent premixed flames, which supports the observations in recent experimental and Direct Numerical Simulation studies. The proposed scaling analysis implies that it is unlikely that turbulence eddies on the unburnt side of realistic turbulent premixed flames can be simultaneously sufficiently small and sufficiently strong to significantly alter the structure of the inner reaction zone.
机译:在这项工作中,我们提出了一种基于物理的缩放理论,用于在预混合火焰的预热区行进时,在Unburnt混合物中的小规模湍流漩涡演变。开发这种缩放理论以明确地解释粘性扩散对小于预混火焰的内反应区厚度的湍流漩涡的长度和速度尺度的影响。这种缩放表明,当它们通过预热区时,湍流涡流的长度和速度尺度都显着改变。使用与有限速率化学和详细分子运输的火焰涡流相互作用的一系列详细数值模拟评估缩放的适用性。将涡旋演化的缩放估计与合理协议的模拟预测进行比较。然后施加所提出的缩放以估计湍流预混焰的未燃烧混合物中的湍流漩涡所需的长度和速度尺度,以通过通过预热区在局部混合通过局部混合产生显着的反应区扰动。这些要求被翻译成大致在湍流预混焰的Unburnt混合物中的最小估计的Karlovitz编号(KA),以潜在地实现分布式燃烧。该估计的最小KA显着高于湍流预混火焰的经典缩放估计(),其支持最近的实验和直接数值模拟研究中的观察结果。所提出的缩放分析意味着现实湍流预混火焰的未燃烧侧上的湍流漩涡可能同时足够小并且足够强以显着改变内反应区的结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号