...
首页> 外文期刊>Computational Materials Science >Effect of indentation speed on deformation behaviors of surface modified silicon: A molecular dynamics study
【24h】

Effect of indentation speed on deformation behaviors of surface modified silicon: A molecular dynamics study

机译:压痕速度对表面改性硅变形行为的影响:分子动力学研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To explore the effect of indentation speed on the deformation behaviors of silicon (Si) surface coated with silica (SiO2) in chemical mechanical polishing process, the nanoindentation test is performed by molecular dynamics (MD) simulation. It is found that the force and indentation depth at which the force drops for high speed are lower than those for low speed, implying the mechanical strength of the bilayer composite increasing with a reducing indention speed. The percentage variations of atom number of coordinated silicon and Si-O bond number consistently indicate that the SiO2 film at higher speed tends to fracture preferentially without sufficient densification and the amount of deformation is also larger. As amorphous SiO2 film tends to fracture during indentation, the original Si-I and newly generated Si-II phases induced by indentation within underlying silicon begin to transform to a Si amorphous structure, which reveals the reason for why the CN5 number for higher indentation speed are larger than those for lower speed at the same indentation depth but with lower CN6 number when indentation depth grows from 4.0 nm to 8.2 nm. Stress analysis indicates the much higher shear stress subjected to silicon at higher speed facilitates the crystalline-to-amorphous transformation.
机译:为了探讨压痕速度对涂有二氧化硅(Si)表面的硅(Si)表面的变形行为的效果,通过分子动力学(MD)模拟进行纳米endentation试验。结果发现,高速的力下降的力和压痕深度低于低速,暗示双层复合材料的机械强度随着降低的缩进速度而增加。协调硅和Si-O键合数的原子次数的百分比变化一致表明,在更高速度下,SiO 2膜倾向于优先没有足够的致密化并且变形量也更大。由于无定形SiO 2膜在压痕期间倾向于破裂,因此底层硅内的凹痕诱导的原始Si-1和新生成的Si-II相开始转化为Si非晶结构,这揭示了为什么CN5数为更高的压痕速度的原因大于相同压痕深度的较低速度,但是当压痕深度从4.0nm到8.2nm增长时,具有较低的CN6数。应力分析表明,在较高速度下经受硅的更高剪切应力促进了结晶 - 无定形的转化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号