...
首页> 外文期刊>Biomacromolecules >Plant-Derived Nanocellulose as Structural and Mechanical Reinforcement of Freeze-Cast Chitosan Scaffolds for Biomedical Applications
【24h】

Plant-Derived Nanocellulose as Structural and Mechanical Reinforcement of Freeze-Cast Chitosan Scaffolds for Biomedical Applications

机译:植物衍生的纳米纤维素作为生物医学应用的冷冻泡糖支架的结构和机械加固

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Despite considerable recent interest in micro and nanofibrillated cellulose as constituents of lightweight structures and scaffolds for applications that range from thermal insulation to filtration, few systematic studies have been reported to date on structure property-processing correlations in freeze-cast chitosan nanocellulose composite scaffolds, in general, and their application in tissue regeneration, in particular. Reported in this study are the effects of the addition of plant-derived nanocellulose fibrils (CNF), crystals (CNCs), or a blend of the two (CNB) to the biopolymer chitosan on the structure and properties of the resulting composites. Chitosan nanocellulose composite scaffolds were freeze-cast at 10 and 1 degrees C/min, and their microstructures were quantified in both the dry and fully hydrated states using scanning electron and confocal microscopy, respectively. The modulus, yield strength, and toughness (work to 60% strain) were determined in compression parallel and the modulus also perpendicular to the freezing direction to quantify anisotropy. Observed were the preferential alignments of CNCs and/or fibrils parallel to the freezing direction. Additionally, observed was the self-assembly of the nanocellulose into microstruts and microbridges between adjacent cell walls (lamellae), features that affected the mechanical properties of the scaffolds. When freeze-cast at 1 degrees C/min, chitosan-CNF scaffolds had the highest modulus, yield strength, toughness, and smallest anisotropy ratio, followed by chitosan and the composites made with the nanocellulose blend, and that with crystalline cellulose. These results illustrate that the nanocellulose additions homogenize the mechanical properties of the scaffold through cell-wall material self-assembly, on the one hand, and add architectural features such as bridges and pillars, on the other. The latter transfer loads and enable the scaffolds to resist deformation also perpendicular to the freezing direction. The observed property profile and the materials' proven biocompatibility highlight the promise of chitosan-nanocellulose composites for a large range of applications, including those for biomedical implants and devices.
机译:尽管近期近期对微型和纳米纤维素纤维素的兴趣作为轻质结构和支架的组分,但是对于从热绝缘到过滤的应用,迄今为止迄今为止迄今为止迄今为止迄今为止迄今为止的冻矿壳聚糖纳米纤维素复合支架支架的性能处理相关性的系统研究。一般,及其在组织再生中的应用。本研究报告的是将植物衍生的纳米纤维素原纤维(CNF),晶体(CNC)的培养物,晶体(CNC)的效果与生物聚合物壳聚糖的混合物添加到所得复合材料的结构和性质上。壳聚糖纳米纤维素复合支架在10和1℃/ min的冷冻浇铸,并使用扫描电子和共聚焦显微镜分别在干燥和完全水合的状态下量化它们的微观结构。在压缩平行中测定模量,屈服强度和韧性(工作至60%应变),并且模量也垂直于冷冻方向以定量各向异性。观察到的是CNCs和/或原纤维的优先对准平行于冷冻方向。另外,观察到的是纳米纤维素的自组装到相邻的细胞壁(LAMELLAE)之间的微生物和微生物,影响支架的机械性能的特征。当冷冻浇注1摄氏度/ min时,壳聚糖-CNF支架具有最高的模量,屈服强度,韧性,最小的各向异性比,其次是壳聚糖和用纳米纤维素混合物制成的复合材料,与结晶纤维素制成的复合材料。这些结果表明,纳米纤维素另外地通过细胞壁材料自组装均匀化支架的机械性能,并在另一方面添加桥梁和支柱等架构特征。后一转移负载并使支架抵抗垂直于冷冻方向的变形。观察到的财产概况和材料的证明生物相容性突出了壳聚糖 - 纳米纤维素复合材料的许多应用的承诺,包括生物医学植入物和器件的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号