首页> 外文期刊>Biomacromolecules >Highly Mineralized Biomimetic Polysaccharide Nanofiber Materials Using Enzymatic Mineralization
【24h】

Highly Mineralized Biomimetic Polysaccharide Nanofiber Materials Using Enzymatic Mineralization

机译:高度矿化的生物仿生多糖纳米纤维材料使用酶矿化

获取原文
获取原文并翻译 | 示例
           

摘要

Many biological high-performance composites, such as bone, antler, and crustacean cuticles, are composed of densely mineralized and ordered nanofiber materials. The mimicry of even simplistic bioinspired structures, i.e., of densely and homogeneously mineralized nanofibrillar materials with controllable mechanical performance, continues to be a grand challenge. Here, using alkaline phosphatase as an enzymatic catalyst, we demonstrate the dense, homogeneous, and spatially controlled mineralization of calcium phosphate nanostructures within networks of anionically charged cellulose nanofibrils (CNFs) and cationically charged chitin nanofibrils (ChNFs)-both emerging biobased nanoscale building blocks for sustainable high-performance materials design. Our study reveals that anionic CNFs lead to a more homogeneous nanoscale mineralization with very high mineral contents up to ca. 70 wt % with a transition from amorphous to crystalline deposits, while cationic ChNFs yield rod-like crystalline morphologies. The bone-inspired CNF bulk films exhibit a significantly increased stiffness, maintain good flexibility and translucency, and have a significant gain in wet state mechanical properties. The mechanical properties can be tuned both by the enzyme concentration and the mineralization time. Moreover, we also show a spatial control of the mineralization using kinetically controlled substrate uptake in a dialysis reactor, and by spatially selectively incorporating the enzyme into 2D printed filament patterns. The strategy highlights possibilities for spatial encoding of enzymes in tailored structures and patterns and programmed mineralization processes, promoting the potential application of mineralized CNF biomaterials with complex gradients for bone substitutes and tissue regeneration in general.
机译:许多生物高性能复合材料,如骨,鹿角和甲壳类结构,由密集的矿化和有序的纳米纤维材料组成。甚至是简单的生物悬浮结构的模拟,即密集和均匀的矿化纳米纤维材料,具有可控的机械性能,仍然是一个大挑战。这里,使用碱性磷酸酶作为酶促催化剂,我们证明了磷酸钙纳米结构的致密,均匀和空间上控制的矿物质在阴离子上电荷的纤维素纳米纤维(CNFS)网络中,阳离子电甲蛋白纳米纤维(CHNFS) - 出现的生物化纳米型构建块适用于可持续高性能材料设计。我们的研究表明,阴离子CNFS导致更均匀的纳米级矿化,矿物质含量非常高。 70wt%,其从非晶沉积到结晶沉积物,而阳离子CHNFS产生棒状晶体形态。骨骼启发的CNF散装膜表现出显着提高的刚度,保持良好的柔韧性和半透明性,并且在湿态机械性能下具有显着的增益。可以通过酶浓度和矿化时间来调谐机械性能。此外,我们还通过在透析反应器中使用动力学控制的底物吸收以及通过在空间上选择性地将酶掺入2D印刷丝图案中的空间控制。该策略突出了酶在定制结构和图案和编程的矿化过程中酶的空间编码的可能性,促进了矿化CNF生物材料的潜在应用,以骨代替氏素和组织再生。

著录项

  • 来源
    《Biomacromolecules》 |2020年第6期|共11页
  • 作者单位

    Univ Freiburg A3BMS Lab Act Adapt &

    Autonomous Bioinspired Mat Inst Macromol Chem Freiburg Mat Res Ctr FMF D-79104 Freiburg Germany;

    Univ Freiburg A3BMS Lab Act Adapt &

    Autonomous Bioinspired Mat Inst Macromol Chem Freiburg Mat Res Ctr FMF D-79104 Freiburg Germany;

    Univ Freiburg A3BMS Lab Act Adapt &

    Autonomous Bioinspired Mat Inst Macromol Chem Freiburg Mat Res Ctr FMF D-79104 Freiburg Germany;

    Univ Freiburg A3BMS Lab Act Adapt &

    Autonomous Bioinspired Mat Inst Macromol Chem Freiburg Mat Res Ctr FMF D-79104 Freiburg Germany;

    Donghua Univ Coll Mat Sci &

    Engn State Key Lab Modificat Chem Fibers &

    Polymer Mat Shanghai 201620 Peoples R China;

    Tottori Univ Grad Sch Engn Tottori 6808502 Japan;

    Donghua Univ Coll Mat Sci &

    Engn State Key Lab Modificat Chem Fibers &

    Polymer Mat Shanghai 201620 Peoples R China;

    Univ Freiburg A3BMS Lab Act Adapt &

    Autonomous Bioinspired Mat Inst Macromol Chem Freiburg Inst Adv Studies FRIA Freiburg Mat Res Ctr FMF Freiburg Ctr Interact Ma D-79104 Freiburg Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号