...
首页> 外文期刊>Biomacromolecules >3D Scaffolds Based on Conductive Polymers for Biomedical Applications
【24h】

3D Scaffolds Based on Conductive Polymers for Biomedical Applications

机译:基于生物医学应用的导电聚合物的3D支架

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

3D scaffolds appear to be a cost-effective ultimate answer for biomedical applications, facilitating rapid results while providing an environment similar to in vivo tissue. These biomaterials offer large surface areas for cell or biomaterial attachment, proliferation, biosensing and drug delivery applications. Among 3D scaffolds, the ones based on conjugated polymers (CPs) and natural nonconductive polymers arranged in a 3D architecture provide tridimensionality to cellular culture along with a high surface area for cell adherence and proliferation as well electrical conductivity for stimulation or sensing. However, the scaffolds must also obey other characteristics: homogeneous porosity, with pore sizes large enough to allow cell penetration and nutrient flow; elasticity and wettability similar to the tissue of implantation; and a suitable composition to enhance cell matrix interactions. In this Review, we summarize the fabrication methods, characterization techniques and main applications of conductive 3D scaffolds based on conductive polymers. The main barrier in the development of these platforms has been the fabrication and subsequent maintenance of the third dimension due to challenges in the manipulation of conductive polymers. In the last decades, different approaches to overcome these barriers have been developed for the production of conductive 3D scaffolds, demonstrating a huge potential for biomedical purposes. Finally, we present an overview of the emerging strategies developed to manufacture 3D conductive scaffolds, the techniques used to fully characterize them, and the biomedical fields where they have been applied.
机译:3D脚手架似乎是生物医学应用的成本效益的最终答案,促进快速结果,同时提供类似于体内组织的环境。这些生物材料为细胞或生物材料附着,增殖,生物传感和药物递送应用提供大型表面积。在3D支架中,基于共轭聚合物(CPS)和布置在3D架构中的天然非导电聚合物的诸如细胞培养的曲线,以及具有用于细胞粘附和增殖的高表面积,以及用于刺激或感测的电导率。然而,支架还必须遵守其他特征:均匀孔隙率,孔径足够大以允许细胞穿透和营养流动;弹性和润湿性类似于植入组织;和一种合适的组合物,以增强细胞基质相互作用。在本文中,我们基于导电聚合物总结了导电3D支架的制造方法,表征技术和主要应用。由于在操纵导电聚合物的挑战中,这些平台开发的主要屏障已经是制造和随后的第三维度的维护。在过去的几十年中,克服了这些障碍的不同方法是为导电3D支架的生产制定,展示了生物医学目的的巨大潜力。最后,我们概述了制造3D导电脚手架的新兴策略,用于完全表征它们的技术以及它们已应用的生物医学领域。

著录项

  • 来源
    《Biomacromolecules》 |2019年第1期|共17页
  • 作者单位

    POLYMAT Univ Basque Country UPV EHU Ave Tolosa 72 Donostia San Sebastian 20018 Spain;

    POLYMAT Univ Basque Country UPV EHU Ave Tolosa 72 Donostia San Sebastian 20018 Spain;

    POLYMAT Univ Basque Country UPV EHU Ave Tolosa 72 Donostia San Sebastian 20018 Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号