...
首页> 外文期刊>Colloids and Surfaces, B. Biointerfaces >Biofabrication of Lysinibacillus sphaericus-reduced graphene oxide in three-dimensional polyacrylamide/carbon nanocomposite hydrogels for skin tissue engineering
【24h】

Biofabrication of Lysinibacillus sphaericus-reduced graphene oxide in three-dimensional polyacrylamide/carbon nanocomposite hydrogels for skin tissue engineering

机译:三维聚丙烯酰胺/碳纳米复合水凝胶中冬硝嘧磺酸盐磷酸盐磷酸盐的生物结组皮肤组织工程

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The biological synthesis of reduced graphene oxide (rGO) from graphene oxide (GO) is an emerging phenomenon for developing biocompatible nanomaterials for its potential applications in nanomedicine. In this study, we demonstrated a simple, green, and non-toxic method for graphene synthesis using the live biomass of Lysinibacillus sphaericus as the reducing and stabilizing agent under ambient conditions. Ultraviolet-visible spectroscopic analysis confirmed the formation of graphene from GO suspension. X-ray diffraction studies showed the disappearance of the GO peak and the appearance of characteristic graphene broad peak at 20 = 22.8 degrees. Infrared analysis showed the decrease/disappearance of peaks corresponding to the oxygen-containing functionalities, and appearance of a peak at 1620 cm(-1) from unoxidized graphitic domains. Scanning electron microscopic images showed that L. sphaericus-reduced graphene oxide (L-rGO) contains aggregated graphene nanoflakes. Evaluation of the in vitro cytotoxicity of L-rGO nanosheets on human skin fibroblasts using the WST-1 assay did not show any significant effects after 24 h of exposure, which is indicative of biocompatibility. Polyacrylamide hydrogels with L-rGO were synthesized and used as scaffolds to support the growth and proliferation of skin fibroblasts. Cell viability assays and DAPI staining showed proliferation of fibroblasts and exhibited 83% of cell viability even after 28 days. Biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus was enhanced in nanocomposite hydrogels in the presence of 0.25 mg/mL GO and L-rGO in 48 h. Overall, this study showed that microbially-synthesized L-rGO can be used as a dopant in polymeric scaffolds for tissue engineering and highlighted their role in biofilm formation.
机译:石墨烯氧化物(RGO)的生物合成石墨烯氧化物(GO)是用于在纳米卫生尼的潜在应用中显影生物相容性纳米材料的新兴现象。在这项研究中,我们证明了使用Lysinibacillus Sphaericus的活生物量作为在环境条件下作为还原和稳定剂的石墨烯合成的简单,绿色和无毒的方法。紫外线可见光谱分析证实了石墨烯从悬浮液中形成。 X射线衍射研究表明,在20 = 22.8度的情况下,GO峰的消失和特征石墨烯宽峰的外观。红外分析显示,与含氧功能相对应的峰值的降低/消失,以及来自未氧化的石墨结构域1620cm(-1)的峰的外观。扫描电子显微镜图像显示L. Sphaericus-还原的石墨烯氧化物(L-Rgo)含有聚集的石墨烯纳米薄片。使用WST-1测定评估L-RGO纳米片的体外细胞毒性,使用WST-1测定在暴露24小时后没有显示出任何显着的影响,这表明生物相容性。合成具有L-RGO的聚丙烯酰胺水凝胶并用作支架,以支持皮肤成纤维细胞的生长和增殖。细胞活力测定和DAPI染色显示成纤维细胞的增殖,甚至在28天后表现出83%的细胞活力。在48小时内,在纳米复合水分中,在纳米复合水凝胶中增强了铜绿假单胞菌和金黄色葡萄球菌的生物膜形成。总体而言,该研究表明,微血上合成的L-Rgo可用作聚合物支架中的掺杂剂,用于组织工程,并突出了它们在生物膜形成中的作用。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号