首页> 外文期刊>Biochimica et biophysica acta. Molecular cell research >Quinolinic acid neurotoxicity: Differential roles of astrocytes and microglia via FGF-2-mediated signaling in redox-linked cytoskeletal changes
【24h】

Quinolinic acid neurotoxicity: Differential roles of astrocytes and microglia via FGF-2-mediated signaling in redox-linked cytoskeletal changes

机译:喹啉酸神经毒性:星形胶质细胞和小胶质细胞通过FGF-2介导的信号传导在氧化还原相关的细胞骨架变化中的差异作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

QUIN is a glutamate agonist playing a role in the misregulation of the cytoskeleton, which is associated with neurodegeneration in rats. In this study, we focused on microglial activation, FGF2/Erk signaling, gap junctions (GJs), inflammatory parameters and redox imbalance acting on cytoskeletal dynamics of the in QUIN-treated neural cells of rat striatum. FGF-2/Erk signaling was not altered in QUIN-treated primary astrocytes or neurons, however cytoskeleton was disrupted. In co-cultured astrocytes and neurons, QUIN-activated FGF2/Erk signaling prevented the cytoskeleton from remodeling. In mixed cultures (astrocyte, neuron, microglia), QUIN-induced FGF-2 increased level failed to activate Erk and promoted cytoskeletal destabilization. The effects of QUIN in mixed cultures involved redox imbalance upstream of Erk activation. Decreased connexin 43 (Cx43) immunocontent and functional GJs, was also coincident with disruption of the cytoskeleton in primary astrocytes and mixed cultures. We postulate that in interacting astrocytes and neurons the cytoskeleton is preserved against the insult of QUIN by activation of FGF-2/Erk signaling and proper cell-cell interaction through GJs. In mixed cultures, the FGF2/Erk signaling is blocked by the redox imbalance associated with microglial activation and disturbed cell communication, disrupting the cytoskeleton. Thus, QUIN signal activates differential mechanisms that could stabilize or destabilize the cytoskeleton of striatal astrocytes and neurons in culture, and glial cells play a pivotal role in these responses preserving or disrupting a combination of signaling pathways and cell-cell interactions. Taken together, our findings shed light into the complex role of the active interaction of astrocytes, neurons and microglia in the neurotoxicity of QUIN. (C) 2016 Elsevier B.V. All rights reserved.
机译:QUIN是一种谷氨酸激动剂,在细胞骨架的失调中起作用,这与大鼠神经变性有关。在这项研究中,我们集中于小胶质细胞激活,FGF2 / Erk信号,缝隙连接(GJs),炎症参数和氧化还原失衡影响QUIN处理的大鼠纹状体神经细胞的细胞骨架动力学。在经QUIN处理的原代星形胶质细胞或神经元中,FGF-2 / Erk信号没有改变,但是细胞骨架被破坏了。在共培养的星形胶质细胞和神经元中,QUIN激活的FGF2 / Erk信号传导阻止了细胞骨架的重塑。在混合培养物中(星形胶质细胞,神经元,小胶质细胞),QUIN诱导的FGF-2水平升高无法激活Erk并促进细胞骨架失稳。 QUIN在混合培养中的作用涉及Erk激活上游的氧化还原失衡。连接蛋白43(Cx43)免疫含量和功能性GJ的减少,也与原代星形胶质细胞和混合培养物中细胞骨架的破坏相吻合。我们推测在相互作用的星形胶质细胞和神经元中,通过激活FGF-2 / Erk信号和通过GJs进行适当的细胞间相互作用,保留了抗QUIN侵害的细胞骨架。在混合培养物中,FGF2 / Erk信号传导被与小胶质细胞活化和干扰的细胞通讯有关的氧化还原失衡所阻断,破坏了细胞骨架。因此,QUIN信号激活了可以稳定或破坏培养的纹状体星形胶质细胞和神经元细胞骨架的差异机制,而神经胶质细胞在这些反应中起着关键作用,从而保留或破坏了信号传导途径和细胞间相互作用的组合。综上,我们的发现揭示了星形胶质细胞,神经元和小胶质细胞的主动相互作用在QUIN的神经毒性中的复杂作用。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号