...
首页> 外文期刊>Biochimica et biophysica acta. Molecular cell research >Proofreading of substrate structure by the Twin-Arginine Translocase is highly dependent on substrate conformational flexibility but surprisingly tolerant of surface charge and hydrophobicity changes
【24h】

Proofreading of substrate structure by the Twin-Arginine Translocase is highly dependent on substrate conformational flexibility but surprisingly tolerant of surface charge and hydrophobicity changes

机译:双精氨酸转位酶对底物结构的校对高度依赖于底物构象的柔性,但出人意料地耐受表面电荷和疏水性变化

获取原文
获取原文并翻译 | 示例

摘要

The Tat system transports folded proteins across the bacterial plasma membrane, and in Escherichia coli preferentially transports correctly-folded proteins. Little is known of the mechanism by which Tat proofreads a substrate's conformational state, and in this study we have addressed this question using a heterologous single-chain variable fragment (scFv) with a defined structure. We introduced mutations to surface residues while leaving the folded structure intact, and also tested the importance of conformational flexibility. We show that while the scFv is stably folded and active in the reduced form, formation of the 2 intra-domain disulphide bonds enhances Tat-dependent export 10-fold, indicating Tat senses the conformational flexibility and preferentially exports the more rigid structure. We further show that a 26-residue unstructured tail at the C-terminus blocks export, suggesting that even this short sequence can be sensed by the proofreading system. In contrast, the Tat system can tolerate significant changes in charge or hydrophobicity on the scFv surface; substitution of uncharged residues by up to 3 Lys-Glu pairs has little effect, as has the introduction of up to 5 Lys or Glu residues in a confined domain, or the introduction of a patch of 4 to 6 Leu residues in a hydrophilic region. We propose that the proofreading system has evolved to sense conformational flexibility and detect even very transiently-exposed internal regions, or the presence of unfolded peptide sections. In contrast, it tolerates major changes in surface charge or hydrophobicity. (C) 2016 Elsevier B.V. All rights reserved.
机译:Tat系统将折叠的蛋白质跨细菌质膜运输,而在大肠杆菌中则优先运输正确折叠的蛋白质。关于Tat校对底物构象状态的机制知之甚少,在这项研究中,我们已经使用具有定义结构的异源单链可变片段(scFv)解决了这个问题。我们将突变引入表面残基,同时保留折叠结构的完整性,并测试了构象柔韧性的重要性。我们显示,虽然scFv稳定折叠并以还原形式活跃,但2个域内二硫键的形成增强了Tat依赖性出口的10倍,表明Tat感觉到构象柔韧性并优先出口更坚硬的结构。我们进一步显示,在C末端有26个残基的非结构化尾巴阻止了出口,这表明校对系统也能感知到这种短序列。相比之下,Tat系统可耐受scFv表面电荷或疏水性的显着变化。用最多3个Lys-Glu对取代不带电荷的残基几乎没有效果,在封闭区域最多引入5个Lys或Glu残基,或在亲水区域引入4至6个Leu残基的补丁。我们建议校对系统已经发展到可以感知构象灵活性,甚至可以检测到非常短暂暴露的内部区域,或者存在未折叠的肽段。相反,它可以承受表面电荷或疏水性的重大变化。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号