...
首页> 外文期刊>BioSystems >Reinforcement of genetic coherence: A single-locus model
【24h】

Reinforcement of genetic coherence: A single-locus model

机译:遗传一致性的增强:单基因座模型

获取原文
获取原文并翻译 | 示例

摘要

Genetic coherence and genetic separation are the outcome of evolutionary mechanisms which maintain genetic variation within populations through recombination on the one hand, and which divide this variation via speciation between reproductively (recombinatorically) more or less isolated populations on the other. While mechanisms of speciation have received considerable attention in biology, their counterpart, mechanisms of genetic coherence, are addressed only implicitly, if at all. Usually, genetic coherence is intuitively associated with the forces maintaining genetic polymorphisms and thus potential for flexible adaptational reaction of populations. However, so far no models seem to exist which explain the evolution of genetic coherence as the natural counterpart of genetic separation or speciation. In this paper a single-locus model is analyzed, in which a mutant allele is introduced into a resident stable diallelic polymorphism, and where this allele is equivalent to one of the resident alleles in all respects with the exception of mating relations. The conditions for replacement of the resident allele by its selectively equivalent mutant are obtained with reference to the associated mating relations. It turned out that for heterozygote advantage the mutant replaces the selectively equivalent resident allele if it increases the mating preferences for carriers of other alleles. The evolution of lower such preferences requires heterozygote inferiority, which confirms the Wallace effect of speciation (by reinforcement). It is argued that this observation suggests that non-selective constituents of the mating system form the section of the genetic system that is responsible for moderating the genetic load implied by adapting selection while simultaneously securing the adaptational potential embodied in the resident allelic variation. Mating systems thus serve the preservation of adaptability. (C) 1997 Elsevier Science Ireland Ltd.
机译:遗传一致性和遗传分离是进化机制的结果,这种进化机制一方面通过重组保持种群内部的遗传变异,另一方面通过种属(重组)或多或少的分离种群之间的物种分化来划分这种变异。虽然物种形成机制已在生物学中引起了广泛关注,但它们的对应物,即遗传一致性机制,即使有的话,也只是隐含地涉及。通常,遗传一致性与保持遗传多态性的力直观相关,因此具有潜在的种群适应性反应的潜力。但是,到目前为止,似乎还没有模型可以解释遗传一致性的进化,而遗传一致性是遗传分离或物种形成的自然对应物。在本文中,分析了单基因座模型,其中将突变等位基因引入常驻稳定二元多态性,并且该等位基因在各个方面均等同于常住等位基因之一,但交配关系除外。参照相关的交配关系,获得由其等价的突变体替代常驻等位基因的条件。事实证明,对于杂合子优势,如果突变体增加了其他等位基因携带者的交配偏好,它将取代选择性等价的常驻等位基因。较低的这种偏好的进化需要杂合子自卑,这确认了物种的华莱士效应(通过强化)。有人认为,这种观察表明,交配系统的非选择性组成部分构成了遗传系统的一部分,该部分负责调节适应选择所隐含的遗传负荷,同时确保常驻等位基因变异中体现的适应潜力。因此,配合系统有助于保持适应性。 (C)1997爱思唯尔科学爱尔兰有限公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号