首页> 外文期刊>Chemical geology >Liquid immiscibility in the CaF2-granite system and trace element partitioning between the immiscible liquids
【24h】

Liquid immiscibility in the CaF2-granite system and trace element partitioning between the immiscible liquids

机译:液体不混溶在CaF2 - 花岗岩系统中和不混溶液体之间的微量元素分配

获取原文
获取原文并翻译 | 示例
           

摘要

The recent discoveries of Ca-fluoride melt in magmatic systems, especially in peralkaline granites with rare earth element enrichment, has raised questions about the presence and nature of liquid immiscibility in CaF2-granite systems, as well as the partitioning behavior of trace elements between such immiscible liquids. We have experimentally explored the immiscibility in this system using natural granite-fluorite starting materials at fast-and slow-cooling rates, temperatures from 500 degrees C to 1200 degrees C and 1 atmosphere pressure. Our experiments confirm the presence of a miscibility gap in the CaF2-granite system over a wide range of temperatures. The two immiscible liquids are a mafic fluorosilicate melt (fm) with high CaO and F and a felsic oxysilicate melt (sm) with high SiO2 and alkalis. Immiscibility is encountered when the bulk F-content exceeds approximately 4.4 wt% at 1200 degrees C and then rapidly decreases to only 0.75 wt% at low temperature (below 900 degrees C). This indicates that calcic magmas are able to evolve to the liquid immiscibility domain by the residual enrichment of fluorine resulting from fractional crystallization, and that liquid immiscibility should be common. The peritectic reaction fm = sm + fluorite removes the fluorosilicate liquid around 600 degrees C and could explain the absence of fluorosilicate observations in natural granites. The compositions of the liquids in fast-cooling experiments show a significantly larger miscibility gap which is characterized by, compared to slow-cooling runs, similar sm compositions but higher Ca and F content in fm. This difference is caused by suppression of fluorite nucleation and is interpreted as a metastable extension of the high temperature liquid immiscibility. Immiscibility results in strong fractionation of trace elements which is primarily governed by melt structure and the ionic potential (Z/r) of the elements. The behavior of trace elements can be categorized into three groups:
机译:最近在岩浆系统中发现的Ca-氟化物熔体,特别是在具有稀土元素富集的吡吡尼花岗岩中,已经提出了关于CAF2-花岗岩系统中液体不混溶的存在和性质的问题,以及在这种情况下的微量元素的分配行为不混溶的液体。我们在本系统中使用天然花岗岩 - 萤石原料在快速和缓慢冷却速率下进行了实验探索了不混溶的,从500℃至1200℃和1个大气压的温度。我们的实验证实了CAF2花岗岩系统中的混溶性差距在很多温度范围内。两种不混溶的液体是具有高CaO和F的乳丝氟硅酸盐熔体(FM)和具有高SiO 2和碱的肠道硅酸盐熔体(SM)。当体积F含量在1200℃下超过4.4wt%时,遇到不混溶,然后在低温下快速降低至仅0.75wt%(低于900℃)。这表明钙岩浆能够通过分数结晶所引起的氟的残留富集氟化芳烃,并且液体不混溶地是常见的。晶片反应FM = SM +萤石除去约600℃的氟硅酸盐液体,并可解释在天然花岗岩中的氟硅酸盐观察。快速冷却实验中液体的组合物显示出明显较大的混溶性间隙,其特征在于,与缓慢的慢冷却,类似的SM组合物相比,具有更高的Ca和FM中的F含量。这种差异是由抑制萤石成核引起的,并被解释为高温液体不混溶的亚稳延伸。不混溶导致痕量元素的强分馏,其主要由熔融结构和元素的离子电位(Z / R)管辖。跟踪元素的行为可以分为三组:

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号