首页> 外文期刊>Chemometrics and Intelligent Laboratory Systems >An intelligent non-optimality self-recovery method based on reinforcement learning with small data in big data era
【24h】

An intelligent non-optimality self-recovery method based on reinforcement learning with small data in big data era

机译:基于钢筋学习的大数据时代小数据的智能非最优自恢复方法

获取原文
获取原文并翻译 | 示例
           

摘要

Batch processes have attracted extensive attention as a crucial manufacturing way in modem industries. Although they are well equipped with control devices, batch processes may operate at a non-optimal status because of process disturbances, equipment aging, feedstock variations, etc. As a result, the quality indices or economic benefits may be undesirable using the pre-defined normal operation conditions. And this phenomenon is called non-optimality here. Therefore, it is indispensable to timely remedy the process to its optimal status without accurate models or amounts of data. To solve this problem, this study proposes an intelligent non-optimality self recovery method based on reinforcement learning. First, the causal variables that lead to the non-optimality are identified by developing a status-degraded Fisher discriminant analysis with consideration of sparsity. Second, on the basis of self-learning mechanism, an intelligent self-recovery method is proposed using the reinforcement learning to automatically adjust the set-points of the causal controlled variables. The self-recovery action is taken iteratively through the Actor-Critic structure with two neural networks. In this way, effective actions are taken to remedy the process to its expected status which only require small data. Finally, the efficacy of the proposed method is illustrated by both numerical case and a typical batch-type manufacturing process, i.e., the injection molding process.
机译:批量流程在调制解调器行业中引起了广泛的关注。虽然它们配备了控制装置,但由于过程干扰,设备老化,原料变化等,批处理过程可以以非最佳状态运行,因此使用预先义的质量指标或经济效益可能是不希望的正常运行条件。这种现象在这里被称为不可效果。因此,在没有准确的模型或数据量的情况下,将过程及时纠正该过程是必不可少的。为了解决这个问题,本研究提出了一种基于强化学习的智能非最优性自我恢复方法。首先,通过考虑稀疏性,通过开发地位降级的Fisher判别分析来识别导致非最优性的因果变量。其次,在自我学习机制的基础上,建议使用加强学习来自动调整因果控制变量的设定点的智能自我回收方法。通过两个神经网络的演员批评结构迭代地采取自我恢复行动。通过这种方式,采取有效的行动来对其预期状态进行纠正,该过程仅需要小数据。最后,通过数值壳体和典型的批量型制造方法,即注射成型过程来说明所提出的方法的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号