首页> 外文期刊>Acta Horticulturae >Pedigree genotyping: a new pedigree-based approach of QTL identification and allele mining.
【24h】

Pedigree genotyping: a new pedigree-based approach of QTL identification and allele mining.

机译:谱系基因分型:一种新的基于谱系的QTL鉴定和等位基因挖掘方法。

获取原文
获取原文并翻译 | 示例
       

摘要

To date, molecular markers are available for many economically important traits. Unfortunately, lack of knowledge of the allelic variation of the related genes hampers their full exploitation in commercial breeding programs. These markers have usually been identified in one single cross. Consequently, only one or two favourable alleles of the related QTL are identified and exploitable for marker-assisted breeding (MAB), whereas a breeding programme may include several alleles. Selection for just these alleles means that many favourable genotypes are ignored, which decreases efficiency and leads to genetic erosion. A new approach, called Pedigree Genotyping, allows the identification and exploitation of most alleles present in an ongoing breeding programme. This is achieved by including breeding material itself in QTL detection, thus covering multiple generations and linking many crosses through their common ancestors in the pedigree. The principle of Identity by Descent (IBD) is utilised to express the identity of an allele of a modern selection in terms of alleles of founding cultivars. These founder alleles are used as factors in statistical analyses. Co-dominant markers like SSR (microsatellite) markers are essential in this approach since they are able to connect cultivars, breeding selections and progenies at the molecular marker level by monitoring specific chromosomal segments along family trees. Additional advantages of the use of breeding genetic material are (1) a major reduction in experimental costs since plant material is already available and phenotyped by default (2) continuity over generations within breeding programs with regard to marker research (3) the testing of QTL-alleles against a wide range of genetic backgrounds, making results generally applicable, (4) intra- as well as inter-QTL interactions can be explored. Fruit firmness in apple will be used as an example to illustrate the principles of this powerful approach to detect QTLs and estimate their allelic variation.
机译:迄今为止,分子标记可用于许多重要的经济性状。不幸的是,缺乏相关基因等位基因变异的知识阻碍了它们在商业育种计划中的充分利用。这些标记通常已在一个单一的十字标记中鉴定。因此,仅鉴定和利用了相关QTL的一个或两个有利等位基因,可用于标记辅助育种(MAB),而育种程序可能包括多个等位基因。仅对这些等位基因的选择意味着许多有利的基因型被忽略,这降低了效率并导致了遗传侵蚀。一种称为谱系基因分型的新方法可以识别和利用正在进行的育种计划中存在的大多数等位基因。这是通过在QTL检测中包括育种材料本身来实现的,从而涵盖了多个世代,并通过谱系中其共同祖先链接了许多杂交。利用后代身份的原理(IBD)来根据建立品种的等位基因表达现代选择的等位基因的身份。这些创建者等位基因被用作统计分析中的因素。在这种方法中,诸如SSR(微卫星)标记之类的共性标记是必不可少的,因为它们能够通过监测沿家谱的特定染色体片段,在分子标记水平上连接品种,育种选择和后代。使用育种遗传材料的其他优点是(1)由于植物材料已经可用并且默认为表型,因此实验成本大大降低(2)关于标记研究的育种计划中各代之间的连续性(3)QTL的测试-广泛遗传背景下的等位基因,使结果普遍适用。(4)可以探索QTL内部以及QTL间的相互作用。以苹果中的水果硬度为例,说明这种检测QTL和估算其等位基因变异的有效方法的原理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号