首页> 外文期刊>Chemical Product and Process Modeling >Application of Central Composite Design to Optimize Culture Conditions of Chlorella vulgaris in a Batch Photobioreactor: An Efficient Modeling Approach
【24h】

Application of Central Composite Design to Optimize Culture Conditions of Chlorella vulgaris in a Batch Photobioreactor: An Efficient Modeling Approach

机译:中央复合设计在批量光生物反应器中优化小黄紫外线培养条件的应用:一种有效的建模方法

获取原文
获取原文并翻译 | 示例
           

摘要

Microalgae cultivation and their use is a promising approach for integrated CO2 biofixation,wastewater treatment and renewable energy production.To develop such an important technology,there is a need to optimize the culture conditions,maximizing CO2 consumption,degrading the nutrients present in the wastewater and maximise the microalgae biomass production.Central Composite Design(CCD)approach was applied to develop quadratic regression models.The developed models were employed separately to estimate optimal sets of three important input parameters(CO2 concentration,nitrogen-to-phosphorus ratio and culture temperature)for maximizing specific growth rate,biomass productivity and CO2 biofixation rate.The maximum specific growth rate of 1.93 ± 0.19 d~(-1)was observed at an optimal set of 34oC,4:1 nitrogen-to-phosphorus ratio,and 6 % CO2 concentration.The maximum biomass productivity of 86.5 ± 20.0 mgL-1d-1 was obtained at 4.8 % CO2,8:1 nitrogen-to-phosphorus ratio and 28oC.In addition,the maximum CO2 biofixation rate was calculated to be 251.9 ± 13.5 mgL~(-1)d~(-1)at optimal values of 4 % CO2,1:1 nitrogen-to-phosphorus ratio and 25°C.Finally,multi-objective optimization method was employed to predict the maximum CO2 biofixation rate and biomass productivity concurrently.The optimum values of CO2 biofixation rate(182.84 ± 8.42 mgL~(-1)d~(-1))and biomass productivity(78.5 ± 10.0 mgL~(-1)d~(-1))were obtained from operating conditions at 4 % CO2,6:1 nitrogento-phosphorus ratio,25°C culture temperature.These predicted data were in strong agreement with the experimental values.
机译:微藻栽培及其使用是一项有前途的二氧化碳生物混合,废水处理和可再生能源生产的方法。发展如此重要的技术,需要优化培养条件,最大化二氧化碳消耗,降低废水中存在的营养素最大化微藻生物量生产。应用了Central复合设计(CCD)方法来开发二次回归模型。分别使用开发的模型来估计最佳三种重要输入参数(CO2浓度,氮磷比和培养温度)为了最大化特定的生长速率,生物量生产率和二氧化碳生物固定速率。在最佳的34℃,4:1氮磷与磷比的最佳组,4:1氮磷比的最大比较速率为1.93±0.19d〜(-1),6% CO2浓度。获得86.5±20.0mg-1d-1的最高生物质生产率,在4.8%CO 2,8:1氮磷比例和28oC中获得。此外,除了将最大CO 2生物激活速率计算为251.9±13.5mg〜(-1)d〜(-1),最佳值为4%CO 2,1:1氮磷比和25°C。最后,多 - 使用客观优化方法同时预测最大CO 2生物固定速率和生物质生产率。CO2生物固定速率的最佳值(182.84±8.42mg1(-1)d〜(-1))和生物量生产率(78.5±10.0 mgl〜 (-1)D〜(-1))从4%CO 2,6:1硝基磷比,25°C培养温度的操作条件下获得。这些预测数据与实验值强烈一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号