...
首页> 外文期刊>Chaos >Sensitivity of reentrant driver localization to electrophysiological parameter variability in image-based computational models of persistent atrial fibrillation sustained by a fibrotic substrate
【24h】

Sensitivity of reentrant driver localization to electrophysiological parameter variability in image-based computational models of persistent atrial fibrillation sustained by a fibrotic substrate

机译:纤维化衬底持续性心房颤动的基于图像的计算模型中的逆变探测定位对电生理学参数变异性的敏感性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, causing morbidity and mortality in millions worldwide. The atria of patients with persistent AF (PsAF) are characterized by the presence of extensive and distributed atrial fibrosis, which facilitates the formation of persistent reentrant drivers (RDs, i.e., spiral waves), which promote fibrillatory activity. Targeted catheter ablation of RD-harboring tissues has shown promise as a clinical treatment for PsAF, but the outcomes remain sub-par. Personalized computational modeling has been proposed as a means of non-invasively predicting optimal ablation targets in individual PsAF patients, but it remains unclear how RD localization dynamics are influenced by inter-patient variability in the spatial distribution of atrial fibrosis, action potential duration (APD), and conduction velocity (CV). Here, we conduct simulations in computational models of fibrotic atria derived from the clinical imaging of PsAF patients to characterize the sensitivity of RD locations to these three factors. We show that RDs consistently anchor to boundaries between fibrotic and non-fibrotic tissues, as delineated by late gadolinium-enhanced magnetic resonance imaging, but those changes in APD/CV can enhance or attenuate the likelihood that an RD will anchor to a specific site. These findings show that the level of uncertainty present in patient-specific atrial models reconstructed without any invasive measurements (i.e., incorporating each individual's unique distribution of fibrotic tissue from medical imaging alongside an average representation of AF-remodeled electrophysiology) is sufficiently high that a personalized ablation strategy based on targeting simulation-predicted RD trajectories alone may not produce the desired result. Published by AIP Publishing.
机译:心房颤动(AF)是最常见的持续心律失常,在全球数百万次引起发病率和死亡率。持久性AF(PSAF)的患者的ATRIA是在存在广泛和分布的心房纤维化的特征,这有助于形成促进纤维活动的持续释放司机(RDS,即螺旋波)。靶向导管烧蚀的RD窝囊组织已作为PSAF的临床治疗所示,但结果仍然是亚靶。已经提出了个性化的计算建模作为无侵入性预测的单独PSAF患者的最佳消融靶标的方法,但仍然不明确于RD定位动态受心房纤维化的空间分布中的患者间隙的影响,动作潜在持续时间(APD )和传导速度(CV)。在这里,我们在源自PSAF患者的临床成像中衍生的纤维化区域的计算模型进行仿真,以表征RD位置对这三种因素的敏感性。我们表明RDS一致地锚定纤维化和非纤维化组织之间的边界,如晚钆增强的磁共振成像所描绘,但APD / CV的那些变化可以增强或衰减RD将锚定向特定部位的可能性。这些发现表明,在没有任何侵入性测量的情况下重建患者特异性心房模型中存在的不确定性水平(即,将每个单独的纤维化组织的独特分布从医学成像和AF-Remofeled电生理学的平均表示)具有足够高的是一个个性化的仅基于靶向仿真预测的RD轨迹的消融策略可能不会产生所需的结果。通过AIP发布发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号