首页> 外文期刊>Cell stem cell >MYC Controls Human Pluripotent Stem Cell Fate Decisions through Regulation of Metabolic Flux
【24h】

MYC Controls Human Pluripotent Stem Cell Fate Decisions through Regulation of Metabolic Flux

机译:Myc通过调节代谢通量来控制人多能干细胞命运决定

获取原文
获取原文并翻译 | 示例
       

摘要

Summary As human pluripotent stem cells (hPSCs) exit pluripotency, they are thought to switch from a glycolytic mode of energy generation to one more dependent on oxidative phosphorylation. Here we show that, although metabolic switching occurs during early mesoderm and endoderm differentiation, high glycolytic flux is maintained and, in fact, essential during early ectoderm specification. The elevated glycolysis observed in hPSCs requires elevated MYC/MYCN activity. Metabolic switching during endodermal and mesodermal differentiation coincides with a reduction in MYC/MYCN and can be reversed by ectopically restoring MYC activity. During early ectodermal differentiation, sustained MYCN activity maintains the transcription of “switch” genes that are rate-limiting for metabolic activity and lineage commitment. Our work, therefore, shows that metabolic switching is lineage-specific and not a required step for exit of pluripotency in hPSCs and identifies MYC and MYCN as developmental regulators that couple metabolism to pluripotency and cell fate determination. Graphical Abstract Display Omitted Highlights ? Metabolic switching during hPSC differentiation is germ layer-specific ? Switching is restricted to mesoderm and endoderm following exit from pluripotency ? Early ectodermal differentiation requires maintenance of high glycolytic flux ? Switching is controlled by MYC/MYCN and couples metabolism to cell fate decisions Cliff et?al. show that, contrary to prior understanding, a metabolic switch away from glycolysis is not a required step for human pluripotent stem cell differentiation, and that, in fact, differentiation to ectoderm requires maintenance of high glycolytic flux via MYC/MYCN activity, indicating its role as a developmental regulator.
机译:发明内容作为人类多能干细胞(HPSC)出口多能性,他们被认为从糖酵母的能量发电模式切换至更依赖于氧化磷酸化的糖酵母。在这里,我们表明,尽管在早期的中胚层和内胚层分化期间发生代谢切换,但保持高糖酵解通量,实际上,在早期外胚层规范期间必不可少。在HPSCS中观察到的升高糖酵解需要升高的Myc / mycn活动。内胚层和中胚层分化期间的代谢切换与MYC / MYCN的减少一致,并且可以通过异常恢复MYC活性来逆转。在早期异位分化期间,持续的MyCN活性维持“开关”基因的转录,这些基因是对代谢活动和血统承诺的速率限制。因此,我们的工作表明,代谢切换是特异性的,而不是出口HPSC中的多能性的所需步骤,并将MYC和MYCN作为发育调节剂识别,这些导航调节剂将代谢与多能性和细胞命运耦合的发育调节因子。图形抽象显示省略了亮点? HPSC差异期间的代谢切换是特异性层的特异性?切换仅限于Mesoderm和Endoderm后退出多能性吗?早期异位分化需要维持高糖酵解通量?切换由Myc / Mycn控制,并将代谢与细胞命运决定悬崖et?al的控制。表明,与事先理解相反,远离糖酵解的代谢切换不是人类多能干细胞分化的必需步骤,实际上,与Eccerm的分化需要通过Myc / Mycn活性维持高糖酵解通量,表明其作用作为发展调节器。

著录项

  • 来源
    《Cell stem cell》 |2017年第4期|共15页
  • 作者单位

    Department of Biochemistry and Molecular Biology University of Georgia 500 D.W. Brooks Drive;

    Department of Biochemistry and Molecular Biology University of Georgia 500 D.W. Brooks Drive;

    Department of Biochemistry and Molecular Biology University of Georgia 500 D.W. Brooks Drive;

    Department of Biochemistry and Molecular Biology University of Georgia 500 D.W. Brooks Drive;

    Department of Biochemistry and Molecular Biology University of Georgia 500 D.W. Brooks Drive;

    Department of Biochemistry and Molecular Biology University of Georgia 500 D.W. Brooks Drive;

    Department of Biochemistry and Molecular Biology University of Georgia 500 D.W. Brooks Drive;

    Department of Biochemistry and Molecular Biology University of Georgia 500 D.W. Brooks Drive;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 细胞生物学;
  • 关键词

    MYC; cell fate; metabolic flux; germ layers; pluripotency; metabolic switching; differentiation;

    机译:Myc;细胞命运;代谢助焊剂;胚层;多能性;代谢切换;分化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号