首页> 外文期刊>Catena: An Interdisciplinary Journal of Soil Science Hydrology-Geomorphology Focusing on Geoecology and Landscape Evolution >Modeling cation exchange capacity in multi geochronological-derived alluvium soils: An approach based on soil depth intervals
【24h】

Modeling cation exchange capacity in multi geochronological-derived alluvium soils: An approach based on soil depth intervals

机译:多地质源性抗菌土壤建模阳离子交换能力:一种基于土壤深度间隔的方法

获取原文
获取原文并翻译 | 示例
       

摘要

Knowledge of soil chemical properties is indispensable to conduct sustainable land use management in alluvial areas. In this study we developed specific pedotransfer functions for cation exchange capacity (CEC-PTFs) in alluvial soils based on soil depth intervals. A soil data set (n = 1094 samples) at different depths from three different Nile River terraces (lower, middle, and upper) and the lower and upper Blue Nile terraces in Sudan was randomly collected and divided into a training data set (n1 = 900 samples) and a testing data set (n2 = 194 samples) for validation. Soil pH, texture, and organic matter were used as predictor variables to estimate CEC. PTF performance was evaluated with the coefficient of determination (R-2), root mean square error (RMSE), and standard error for the estimate (SEE) between the observed and predicted values. Fourteen predictive equations were developed. Results revealed that the CEC of topsoil layers of the lower Nile River terrace were the most difficult to predict (r(2) = 0.29 for training) while the deep soil layers (60-120 cm) of the Blue Nile terraces were predicted well (r(2) = 0.99 for training). Sixty to 76% of CEC variation of the subsoil of the Nile River terraces could be explained by clay alone. From 85 to 90% of the CEC variation in the deep soils could be explained by organic matter, total silt, and total clay. Validated results indicate that the predictive models based on total clay were less reliable at predicting CEC in the top soil layers. Overall, the CEC-PTFs generated by multiple linear regression models (MLR) provided a reasonable estimate of CEC for most soils investigated.
机译:对土壤化学性质的知识是在冲积地区进行可持续土地利用管理不可或缺的。在这项研究中,我们基于土壤深度间隔开发了对阳离子土壤中的阳离子交换能力(CEC-PTF)的特定网兜功能。从三个不同的尼罗河梯田(下部,中部和上部)和下部和上部蓝色尼罗河梯形中的不同深度的土壤数据集(n = 1094个样本)被随机收集并分为训练数据集(N1 = 900个样本)和测试数据集(N2 = 194个样本)用于验证。使用土壤pH,质地和有机物质作为预测变量来估计CEC。通过确定系数(R-2),根均方误差(RMSE)和标准误差来评估PTF性能,以及在观察到的值之间的估计(参见)。开发了十四个预测方程。结果表明,下尼罗河露台的表土层的CEC是最难以预测(训练的r(2)= 0.29),而预测蓝色尼罗河的深层土壤层(60-120厘米)( r(2)= 0.99进行培训)。单独的粘土可以解释九座河梯子的泥土的六十至76%的CEC变化。深度土壤中的85%至90%的CEC变化可以通过有机物,总淤泥和总粘土来解释。验证结果表明,基于总粘土的预测模型在预测顶部土层中的CEC时不太可靠。总的来说,由多元线性回归模型(MLR)产生的CEC-PTF提供了对大多数土壤进行CEC的合理估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号