首页> 外文期刊>Calphad: Computer Coupling of Phase Diagrams and Thermochemistry >Modelling surface melting of macro-crystals and melting of nano-crystals for the case of perfectly wetting liquids in one-component systems using lead as an example
【24h】

Modelling surface melting of macro-crystals and melting of nano-crystals for the case of perfectly wetting liquids in one-component systems using lead as an example

机译:用铅为例建模宏晶的宏晶和纳米晶体熔化的熔融液体的熔化,作为一个例子

获取原文
获取原文并翻译 | 示例
           

摘要

It is known that the majority of crystals melt without superheating. It is because liquids usually perfectly wet their own crystals, leading to surface melting at a lower temperature compared to the bulk melting point of the same crystal. In this paper first this phenomenon is modelled. The equilibrium thickness of the liquid nano-layer is found to approach asymptotically infinity as temperature approaches the bulk melting point of the macro-crystal. Further, the size of the solid crystal is gradually reduced below 100 nm and the size dependence of melting nano-crystals is modelled. Calculations are performed for pure lead (Pb), for which experimental results were published for both of the above mentioned phenomena. The validity of our models is confirmed by these literature experimental results. Co-existence of a core solid and a liquid shell is found in a finite temperature range below the macroscopic melting point in one-component nano-systems, explained by the extended phase rule of Gibbs. The lower temperature of this T-range is called here the solidus temperature, while the upper temperature of this T-range is called here the liquidus temperature of the one-component nano-crystal. Both the solidus and liquidus temperatures of the nano-crystal decrease with decreasing particle size and merge together at a critical particle size (found at 4.7 nm and at 493 K for pure lead with bulk melting point of 600.6 K). Below this critical size the nano-particle melts at a single temperature. A general rule is established claiming that when a one-component macro-crystal melts with surface melting, then the same nano-crystal melts with a solid-liquid co-existence within a finite temperature range and vice versa. Three principle types of binary nanophase diagrams are predicted for each type of macro-phase diagram, depending on whether the two components melt with or without surface melting.
机译:众所周知,大多数晶体在没有过热的情况下熔化。这是因为液体通常完全润湿它们自己的晶体,与相同晶体的散装熔点相比,在较低温度下熔化。在本文中,首先,这种现象是模拟的。发现液体纳米层的平衡厚度接近渐近无穷大,随着温度接近宏观晶体的大量熔点。此外,固体晶体的尺寸逐渐降低至于100nm以下,并且建模熔融纳米晶体的尺寸依赖性。对纯铅(Pb)进行的计算,对于上述现象的两者,对其进行了实验结果。这些文献实验结果证实了我们模型的有效性。在一个组分纳米系统中的宏观熔点以下的有限温度范围内发现芯固体和液体壳的共存,由GIBBS的扩展阶段规则解释。此T范围的较低温度在此称为固体温度,而该T范围的上温度在此被称为单组分纳米晶的液相高温。纳米晶体的固相和液相质温度随着粒度的降低而降低,并以临界粒度合并在一起(在4.7nm处发现,在493k处,对于纯熔点为600.6k)。低于该临界尺寸,纳米粒子在单一温度下熔化。建立了一般规则,声称当一个组分宏观晶体用表面熔化熔化时,在有限温度范围内具有固液共存的相同纳米晶体熔体,反之亦然。对于每种类型的宏相图,预测了三个原理类型的二元纳米相图,这取决于两个组分是否熔化或没有表面熔化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号