...
首页> 外文期刊>Biogeosciences >The importance of physiological, structural and trait responses to drought stress in driving spatial and temporal variation in GPP across Amazon forests
【24h】

The importance of physiological, structural and trait responses to drought stress in driving spatial and temporal variation in GPP across Amazon forests

机译:在亚马逊森林跨越亚马逊森林驾驶GPP的空间和时间变化时生理,结构和特征对干旱胁迫的重要性

获取原文
获取原文并翻译 | 示例

摘要

The capacity of Amazon forests to sequester carbon is threatened by climate-change-induced shifts in precipitation patterns. However, the relative importance of plant physiology, ecosystem structure and trait composition responses in determining variation in gross primary productivity (GPP) remain largely unquantified and vary among models. We evaluate the relative importance of key climate constraints to GPP, comparing direct plant physiological responses to water availability and indirect structural and trait responses (via changes to leaf area index (LAI), roots and photosynthetic capacity). To separate these factors we combined the soil-plant-atmosphere model with forcing and observational data from seven intensively studied forest plots along an Amazon drought stress gradient. We also used machine learning to evaluate the relative importance of individual climate factors across sites. Our model experiments showed that variation in LAI was the principal driver of differences in GPP across the gradient, accounting for 33% of observed variation. Differences in photosynthetic capacity (V-cmax and J(max)) accounted for 21% of variance, and climate (which included physiological responses) accounted for 16 %. Sensitivity to differences in climate was highest where a shallow rooting depth was coupled with a high LAI. On sub-annual timescales, the relative importance of LAI in driving GPP increased with drought stress (R-2 = 0.72), coincident with the decreased importance of solar radiation (R-2 = 0.90). Given the role of LAI in driving GPP across Amazon forests, improved mapping of canopy dynamics is critical, opportunities for which are offered by new satellite-based remote sensing missions such as GEDI, Sentinel and FLEX.
机译:亚马逊森林螯合碳的能力受到气候变化诱导的降水模式的换档威胁。然而,植物生理学,生态系统结构和特性组成反应在确定总初级生产率(GPP)的变化中的相对重要性仍然在很大程度上在模型中仍然不受处理和不同。我们评估关键气候限制对GPP的相对重要性,将直接植物生理反应与水可用性和间接结构和特征反应进行比较(通过变化叶面积指数(LAI),根源和光合容量)。为了分离这些因素,我们将土壤 - 植物大气模型与沿亚马逊干旱应力梯度的七个集中研究的森林地块施用和观测数据组合。我们还使用机器学习来评估个人气候因素对网站的相对重要性。我们的模型实验表明,莱的变化是GPP对梯度的主要驱动因素,占观察到变异的33%。光合容量(V-CMAX和J(MAX))的差异占变异的21%,气候(包括生理反应)占16%。浅根深与高赖耦合的浅生根深度的敏感性最高。在亚年度时间尺度上,莱斯驱动GPP的相对重要性随着干旱胁迫(R-2 = 0.72)而增加,随着太阳辐射的重要性而巧合(R-2 = 0.90)。鉴于Lai在亚马逊森林中驾驶GPP的作用,改善了树冠动态的映射至关重要,新的卫星遥感任务提供的机会,如Gedi,Sentinel和Flex等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号