首页> 外文期刊>Biogeosciences >Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange
【24h】

Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

机译:耦合生态水文和生物地球化学算法使水表深度效应仿真对北方泥炭泥网CO2交换

获取原文
获取原文并翻译 | 示例
           

摘要

Water table depth (WTD) effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the eco-physiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1) oxygen transport, which controls energy yields from microbial and root oxidation-reduction reactions, and (2) vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May-October WTD drawdown of similar to 0.25m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (R-e) by 0.26 mu mol CO2 m(-2)s(-1) per 0.1m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen) status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP) and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss) GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 mu mol CO2 m(-2)s(-1) per 0.1m of WTD drawdown. Similar increases in GPP and Re caused no significant WTD effects
机译:水台深度(WTD)对净生态系统二氧化碳交换的影响北方泥炭泥炭源主要是通过对泥炭生物地球化学的水文作用和泥炭地植被的生态生理学来介导。碳模型中这些效果的表现缺乏目前限制了我们在潜在的未来干燥机和较温暖的气候下的北方泥炭碳矿床的预测能力。我们检查了预后WTD的过程水平偶联是否具有(1)氧气转运,其控制来自微生物和根氧化还原反应的能量产量,以及(2)血管和非血管植物水关系可以解释控制网中变化的机制在对比的WTD条件下的抗野芬的CO2交换,即浅与深WTD。这种基于过程的生态系统模型中的生态水文和生物地球化学算法的这种耦合,在加拿大博芳香泥泥泥场的净生态系统CO2交换测量中进行了测试,在干燥天气驱动的逐步衰退下降。从2004年5月至2009年5月的WTD绘图与2004年至2009年的0.25米加速了氧气输送到微生物和根表面,从而实现了更大的微生物和根能源产量和泥炭和凋落物分解,其将模拟的生态系统呼吸(RE)升高0.26μmolCO2 M(-2)S(-1)每0.1米WTD绘图。它还增加了营养矿化,因此根系养分可用性和摄取,导致促进羧化和提高模拟血管总初级生产率(GPP)和植物生长的叶营度(氮气)状态。由于血管植物生长和近表面泥炭干燥的血管植物生长和苔藓干燥的较大阴影,模拟的非血管(MOSS)GPP的模型血管GPP的增加超过了模型的非血管(MOSS)GPP的增加,从而导致模拟的生长季节GPP净增加0.39μmolCO2M (-2)S(-1)每0.1米的WTD绘图。类似GPP和RE增加的增加导致无明显的WTD效果

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号