...
首页> 外文期刊>Biochimica et biophysica acta. Bioenergetics >Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light
【24h】

Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light

机译:当蓝藻适应远红光时,光合仪的广泛重塑改变了光合综合体之间的能量转移

获取原文
获取原文并翻译 | 示例
           

摘要

Some cyanobacteria remodel their photosynthetic apparatus by a process known as Far-Red Light Photoacclimation (FaRLiP). Specific subunits of the phycobilisome (PBS), photosystem I (PSI), and photosystem II (PSII) complexes produced in visible light are replaced by paralogous subunits encoded within a conserved FaRLiP gene cluster when cells are grown in far-red light (FRL; lambda = 700-800 nm). FRL-PSII complexes from the FaRLiP cyanobacterium, Synechococcus sp. PCC 7335, were purified and shown to contain Chl a, Chl d, Chlf, and pheophytin a, while FRL-PSI complexes contained only Chl a and Chlf. The spectroscopic properties of purified photosynthetic complexes from Synechococcus sp. PCC 7335 were determined individually, and energy transfer kinetics among PBS, PSII, and PSI were analyzed by time-resolved fluorescence (TRF) spectroscopy. Direct energy transfer from PSII to PSI was observed in cells (and thylakoids) grown in red light (RL), and possible routes of energy transfer in both RL- and FRL-grown cells were inferred. Three structural arrangements for RL-PSI were observed by atomic force microscopy of thylakoid membranes, but only arrays of trimeric FRL-PSI were observed in thylakoids from FRL-grown cells. Cells grown in FRL synthesized the FRL-specific complexes but also continued to synthesize some PBS and PSII complexes identical to those produced in RL. Although the light-harvesting efficiency of photosynthetic complexes produced in FRL might be lower in white light than the complexes produced in cells acclimated to white light, the FRL-complexes provide cells with the flexibility to utilize both visible and FRL to support oxygenic photosynthesis.
机译:一些蓝细菌通过称为远红光光谱(Farlip)的过程重塑它们的光合仪。在可见光下产生的植物机组(PBS),光系统I(PSI)和照相络合物的特定亚基被在远红光(FRL; lambda = 700-800 nm)。 Frl-psii复合物来自Farlip cyanobacterium,Synechocccus sp。 PCC 7335被纯化并显示含有CHL A,CHL D,CHLF和苯酚肽A,而FRL-PSI复合物仅包含CHL A和CHLF。 SyneChococcus Sp纯化光合复合物的光谱性能。通过时间分辨的荧光(TRF)光谱分析PCC 7335,分别测定PBS,PSII和PSI之间的能量转移动力学。在红光(R1)生长的细胞(和囊体)中观察到从PSII到PSI的直接能量转移,并且推断出RL-和生长的细胞中可能的能量转移途径。通过囊体膜的原子力显微镜观察R1-PSI的三种结构布置,但仅在来自生长细胞的囊体中观察到三聚体FRL-PSI阵列。在FRL中生长的细胞合成了FRL特异性络合物,但也继续合成与R1中产生的那些相同的一些PBS和PSII复合物。尽管在FRL中产生的光合络合物的光学络合物的光学效率可能比在适应白光的细胞中产生的络合物,但是FRL-复合物提供细胞,其具有灵活性,以利用可见和FRL以支持含氧光合作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号