...
首页> 外文期刊>Bioconjugate Chemistry >Platensimycin-Encapsulated Poly(lactic-co-glycolic acid) and Poly(amidoamine) Dendrimers Nanoparticles with Enhanced Anti-Staphylococcal Activity in Vivo
【24h】

Platensimycin-Encapsulated Poly(lactic-co-glycolic acid) and Poly(amidoamine) Dendrimers Nanoparticles with Enhanced Anti-Staphylococcal Activity in Vivo

机译:Plyensimycin-封装的聚(乳酸 - 共乙醇酸)和聚(酰胺胺)树枝状大分子纳米颗粒,具有增强的体内抗葡葡萄球菌活性

获取原文
获取原文并翻译 | 示例

摘要

Serious bacterial infections by multi-drug-resistant pathogens lead to human losses and endanger public health. The discovery of antibiotics with new modes of action, in combination with nanotechnology, might offer a promising route to combat multi-drug-resistant pathogens. Platensimycin (PTM), a potent inhibitor of FabB/FabF for bacterial fatty acid biosynthesis, is a promising drug lead against many drug-resistant bacteria. However, the clinical development of PTM is hampered by its poor pharmacokinetics. Herein, we report a nanostrategy that encapsulated PTM in two types of nanoparticles (NPs) poly(lactic-co-glycolic acid) (PLGA) and poly(amidoamine) (PAMAM) dendrimer to enhance its antibacterial activity in vitro and in vivo. The PTM-encapsulated NPs were effective to inhibit Staphylococcus aureus biofilm formation, and killed more S. aureus in a macrophage cell infection model over free PTM. The pharmacokinetic studies showed that PTM-loaded PLGA and PAMAM NPs exhibited increased AUC(0-t) (area under the curve) (similar to 4- and 2-fold) over free PTM. In a mouse peritonitis model, treatment of methicillin-resistant S. aureus infected mice using both PTM-loaded NPs (10 mg/kg) by intraperitoneal injection led to their full survival, while all infected mice died when treated by free PTM (10 mg/kg). These results not only suggest that PTM-loaded NPs may hold great potential to improve the poor pharmacokinetic properties of PTM, but support the rationale to develop bacterial fatty acid synthase inhibitors as promising antibiotics against drug-resistant pathogens.
机译:多种耐药病原体的严重细菌感染导致人类损失和危险的公共卫生。通过新的作用方式发现抗生素,与纳米技术相结合,可能提供了对抗多种耐药病原体的有希望的途径。 Platensimycin(PTM)是一种用于细菌脂肪酸生物合成的Fabb / Fabf的有效抑制剂,是一种有前途的药物导致许多耐药细菌。然而,PTM的临床发展受其贫困药代动力学的阻碍。在此,我们报告了一种纳米肿大,其用两种类型的纳米颗粒(NPS)聚(乳酸二乙醇酸)(PLGA)和聚(酰胺)树枝状聚合物包封PTM,以在体外和体内增强其抗菌活性。 PTM封装的NPS有效地抑制金黄色葡萄球菌生物膜形成,并在游离PTM过度造成巨噬细胞感染模型中的更多S.UUREUS。药代动力学研究表明,PTM负载的PLGA和PAMAM NPS在游离PTM上表现出增加的AUC(0-T)(曲线下的面积)(类似于4-和2倍)。在小鼠腹膜炎模型中,通过腹膜内注射使用PTM负载的NPS(10mg / kg)的甲氧西林抗性S. aureus感染小鼠的全部存活,而所有感染的小鼠在通过游离PTM处理时死亡(10毫克) /公斤)。这些结果不仅表明PTM负载的NP可能具有改善PTM的差的药代动力学性能的潜力可能存在巨大的潜力,而是支持制育细菌脂肪酸合酶抑制剂作为对抗耐药病原体的有前途的抗生素的理由。

著录项

  • 来源
    《Bioconjugate Chemistry》 |2020年第5期|共13页
  • 作者单位

    Cent South Univ Xiangya Int Acad Translat Med Changsha 410013 Hunan Peoples R China;

    Cent South Univ Xiangya Int Acad Translat Med Changsha 410013 Hunan Peoples R China;

    Cent South Univ Xiangya Int Acad Translat Med Changsha 410013 Hunan Peoples R China;

    Cent South Univ Xiangya Int Acad Translat Med Changsha 410013 Hunan Peoples R China;

    Cent South Univ Xiangya Int Acad Translat Med Changsha 410013 Hunan Peoples R China;

    Cent South Univ Xiangya Int Acad Translat Med Changsha 410013 Hunan Peoples R China;

    Scripps Res Dept Chem Jupiter FL 33458 USA;

    Cent South Univ Xiangya Int Acad Translat Med Changsha 410013 Hunan Peoples R China;

    Cent South Univ Xiangya Int Acad Translat Med Changsha 410013 Hunan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号