...
首页> 外文期刊>Biochemical Engineering Journal >Metabolic modeling of bacterial co-culture systems predicts enhanced carbon monoxide-to-butyrate conversion compared to monoculture systems
【24h】

Metabolic modeling of bacterial co-culture systems predicts enhanced carbon monoxide-to-butyrate conversion compared to monoculture systems

机译:与单一栽培系统相比,细菌共培养系统的代谢建模预测了增强的一氧化碳与丁酸酯转化率

获取原文
获取原文并翻译 | 示例
           

摘要

We used metabolic modeling to computationally investigate the potential of bacterial coculture system designs for CO conversion to the platform chemical butyrate. By taking advantage of the native capabilities of wild-type strains, we developed two anaerobic coculture designs by combining Clostridium autoethanogenum for CO-to-acetate conversion with bacterial strains that offer high acetate-to-butyrate conversion capabilities: the environmental bacterium Clostridium kluyveriand the human gut bacteriumEubacterium rectale. When grown in a continuous stirred tank reactor on a 70/0/30 CO/H2/N2 gas mixture, the C. autoethanogenum-C. kluyveri co-culture was predicted to offer no mprovement in butyrate volumetric productivity compared to an engineered C. autoethanogenum monoculture despite utilizing vinyl acetate as a secondary carbon source for C. kluyveri growth enhancement. A coculture consisting of C. autoethanogenum and C. kluyveri engineered in silico to eliminate hexanoate synthesis was predicted to enhance both butyrate productivity and titer. The C. autoeihanogenum-E. rectale coculture offered similar improvements in butyrate productivity without the need for metabolic engineering when glucose was provided as a secondary carbon source to enhance E. rectale growth. A bubble column model developed to assess the potential for large-scale butyrate production of the C. autoethanogenum-E. rectale design predicted that a 40/30/30 CO/H2/N2 gas mixture and a 5 m column length would be preferred to enhance C. autoethanogenum growth and counteract CO inhibitory effects on E. rectale.
机译:我们使用代谢建模来计算促进细菌共培养系统设计的潜力,以便转化为平台化学丁酸酯。通过利用野生型菌株的本地能力,通过将梭菌血管生成的梭菌转化组合,通过提供高乙酸盐 - 丁酸酯转化能力的细菌菌株来开发出两个厌氧共培养物设计:环境细菌梭菌克鲁氏菌人体肠道细菌直肠。当在70/0/30 CO / H 2 / N 2气体混合物中在连续搅拌的罐反应器中生长,C. autoethanogenum-c。预计Kluyveri共同培养有与工程化的C.自动甲酸的C. auto ethoNogeum Nocroculture相比,不提供丁酸盐体积生产率的Mprovent,尽管利用乙酸乙烯酯作为C.Kluyveri生长增强的二级碳源。预计由C. autoethanogenum和C.kluyveri组成的共核,以消除己酸酯合成,以增强丁酸酯生产率和滴度。 C. autoehanogenum-e。直肠共培育率在丁酸盐生产率中提供了类似的改进,而无需代谢工程,当提供葡萄糖作为二次碳源以增强E.Rectale生长时。开发的泡沫柱模型,以评估C.Aurethanogenum-e的大规模丁酸丁酸盐产生的潜力。直肠设计预测,40/30/30co / h 2 / N 2气体混合物和5米柱长是优选的,以增强C.自动甲基生长和抵消对E. Rectale的抑制作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号