首页> 外文期刊>Biomechanics and modeling in mechanobiology >Head-to-nerve analysis of electromechanical impairments of diffuse axonal injury
【24h】

Head-to-nerve analysis of electromechanical impairments of diffuse axonal injury

机译:弥漫性轴突损伤机电损伤的头部神经分析

获取原文
获取原文并翻译 | 示例
       

摘要

The aim was to investigate mechanical and functional failure of diffuse axonal injury (DAI) in nerve bundles following frontal head impacts, by finite element simulations. Anatomical changes following traumatic brain injury are simulated at the macroscale by using a 3D head model. Frontal head impacts at speeds of 2.5-7.5m/s induce mild-to-moderate DAI in the white matter of the brain. Investigation of the changes in induced electromechanical responses at the cellular level is carried out in two scaled nerve bundle models, one with myelinated nerve fibres, the other with unmyelinated nerve fibres. DAI occurrence is simulated by using a real-time fully coupled electromechanical framework, which combines a modulated threshold for spiking activation and independent alteration of the electrical properties for each three-layer fibre in the nerve bundle models. The magnitudes of simulated strains in the white matter of the brain model are used to determine the displacement boundary conditions in elongation simulations using the 3D nerve bundle models. At high impact speed, mechanical failure occurs at lower strain values in large unmyelinated bundles than in myelinated bundles or small unmyelinated bundles; signal propagation continues in large myelinated bundles during and after loading, although there is a large shift in baseline voltage during loading; a linear relationship is observed between the generated plastic strain in the nerve bundle models and the impact speed and nominal strains of the head model. The myelin layer protects the fibre from mechanical damage, preserving its functionalities.
机译:目的是通过有限元模拟,调查正面撞击后神经束中弥漫性轴突损伤(DAI)的机械和功能失效。通过使用3D头模型在Macroscale上模拟创伤性脑损伤后的解剖改变。正面头部的速度为2.5-7.5m / s的速度,诱导脑的白质诱导温和至中等的戴。对细胞水平的诱导机电反应变化的调查是在两个鳞片神经束模型中进行的,其中一个有肌肉神经纤维,另一个与未键入的神经纤维。通过使用实时完全耦合的机电框架模拟DAI发生,该框架结合了用于尖峰激活的调制阈值和神经束模型中的每个三层纤维的电性能的独立改变。脑模型的白质模拟菌株的幅度用于使用3D神经束模型确定伸长型模拟中的位移边界条件。在高冲击速度下,机械故障发生在大量未填充的束中的较低应变值,而不是在髓束或小未填充的束中;在加载期间和之后,信号传播继续在大的髓束中继续,尽管在装载期间存在大的基线电压偏移;在神经束模型中产生的塑性应变和头部模型的冲击速度和标称菌株之间观察到线性关系。髓层层保护纤维免受机械损坏,保持其功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号