首页> 外文期刊>Biomaterials Science >The influence of electrically conductive and non-conductive nanocomposite scaffolds on the maturation and excitability of engineered cardiac tissues
【24h】

The influence of electrically conductive and non-conductive nanocomposite scaffolds on the maturation and excitability of engineered cardiac tissues

机译:导电和非导电纳米复合支架对工程心脏组织成熟和兴奋性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Utilization of electrically conductive nanomaterials for developing nanocomposite scaffolds has been at the center of attention for engineering functional cardiac tissues. The primary motive in the use of conductive nanomaterials has been to develop biomimetic scaffolds to recapitulate the extracellular matrix (ECM) of the native heart and to promote cardiac tissue maturity, excitability and electrical signal propagation. Alternatively, it is well accepted that the inclusion of nanomaterials also alters the stiffness and nano-scale topography of the scaffolds. However, what is missing in the literature is that to what extent the sole presence of nanomaterials within a scaffold, regardless of their conductivity, influences the maturation and excitability of engineered cardiac tissues. To address this knowledge gap, we developed four different classes of gelatin methacrylate (GelMA) hydrogels, with varied concentrations, embedded electrically conductive gold nanorods (GNRs) and non-conductive silica nanomaterials (SNPs), to assess the influence of matrix stiffness and the presence of nanomaterials on cardiac cell adhesion, protein expression (i.e. maturation), and tissue-level excitability. Our results demonstrated that either embedding nanomaterials (i.e. GNRs and SNPs) or increasing the matrix stiffness significantly promoted cellular retention and the expression of cardiac-specific markers, including sarcomeric a-actinin (SAC), cardiac troponin I (cTnI) and connexin43 (Cx43) gap junctions. Notably, excitation voltage thresholds at a high frequency (i.e. 2 Hz and higher), in both coupled and uncoupled gap junctions induced by heptanol, were lower for scaffolds embedded conductive GNRs or non-conductive SNPs, independent of matrix stiffness. Overall, our findings demonstrated that the sole presence of nanomaterials within the scaffolding matrix had a more pronounced influence as compared to the scaffold stiffness on the cell-cell coupling, maturation and excitability of engineered cardiac tissues.
机译:用于开发纳米​​复合材料支架的导电纳米材料的利用已经在工程功能心脏组织的关注中心处。使用导电纳米材料的主要动力是开发仿生支架,以概括本地心脏的细胞外基质(ECM),并促进心脏组织成熟度,兴奋性和电信号传播。或者,本良好地被认为包含纳米材料的刚度和支架的纳米级形貌也改变。然而,文献中缺少的是,无论其电导率如何,纳米材料内纳米材料的唯一存在会影响工程心脏组织的成熟和兴奋性。为了解决这一知识差距,我们开发了四种不同类别的明胶甲基丙烯酸酯(GELMA)水凝胶,具有变化的浓度,嵌入的导电金纳米棒(GNR)和非导电二氧化硅纳米材料(SNP),以评估基质刚度的影响和心电池粘附性纳米材料的存在,蛋白质表达(即成熟)和组织水平兴奋性。我们的结果表明,嵌入纳米材料(即GNR和SNP)或增加基质刚度显着促进了细胞保留和心脏特异性标记的表达,包括SARCOMERION A-ACTININ(SAC),心肌肌钙蛋白I(CTNI)和Connexin43(CX43 ) 缝隙连接。值得注意的是,在庚醇诱导的高频(即2 Hz和更高)的高频(即2 Hz和更高)的激发电压阈值对于支架嵌入导电GNR或非导电SNP而较低,较低,与基质刚度无关。总体而言,我们的研究结果表明,与细胞 - 细胞偶联的支架刚度相比,脚手架基质内的纳米材料的唯一存在具有更明显的影响,而设计的心脏组织的成熟和兴奋性相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号