首页> 外文期刊>Biomass Conversion and Biorefinery >Saccharification of lignocellulosic biomass using seawater and halotolerant cellulase with potential application in second-generation bioethanol production
【24h】

Saccharification of lignocellulosic biomass using seawater and halotolerant cellulase with potential application in second-generation bioethanol production

机译:利用海水和卤化纤维素酶的木质纤维素生物质含有潜在应用在二代生物乙醇生产中的糖化

获取原文
获取原文并翻译 | 示例
           

摘要

Global water scarcity at an alarming stage has triggered the interest of many environmentalists and global researchers. Use of freshwater in biomass-based industries would result in depletion of a precious natural resource, which is not sustainable in the long term. Thus, water management technologies are critical to the successful operation of an ethanol plant. Utilization of seawater-based systems and halotolerant enzymes can be a breakthrough in this context. The present study involves marine bacterial strainsBacillus oceanisediminis,Brevibacterium halotolerans, andPsychrobacter celercapable of producing halotolerant cellulases, isolated from Gopalpur, Odisha. The crude enzyme extracts and direct bacterial cultures were independently utilized for saccharification of pretreated rice straw, and the treated rice straw was characterized for the production of reducing sugars using high-performance liquid chromatography (HPLC). The possible bond breakage and formation during saccharification of cellulose was assessed using attenuated total reflectance with Fourier transform infrared (ATR-FTIR) spectroscopy. The relative fraction and size of crystallites in cellulose was evaluated by X-ray diffraction (XRD) study. The biomass saccharified using the crude cellulase fromB. oceanisediminswas utilized for the production of bioethanol in freshwater and seawater-based media usingSaccharomyces cerevisiaeNCIM 3570 andCandida shehataeNCIM 3500. The maximum fermentation efficiency (45.74%) was recorded for saccharified rice straw in freshwater using a consortium of immobilized yeasts. The highest fermentation efficiency (36.69%) was recorded in the seawater system by immobilizedS. cerevisiae.
机译:令人担忧的阶段的全球水资源稀缺引发了许多环保主义者和全球研究人员的兴趣。使用淡水在基于生物量的工业将导致珍贵的自然资源枯竭,这在长期不可持续。因此,水管理技术对乙醇植物的成功运作至关重要。在这种情况下,利用河水的系统和卤化酶可以是突破。本研究涉及海洋细菌菌株海洋疗法,嗜酸杆菌的嗜酸杆菌菌,Sandobrobacters粘蛋白酶,从Gopalpur分离出来的幼儿园。粗酶提取物和直接细菌培养物独立地用于预处理的稻草秸秆的糖化,并且处理过的稻草用于使用高效液相色谱(HPLC)产生还原糖。使用傅里叶变换红外(ATR-FTIR)光谱分析,评估纤维素糖化期间的可能粘合和形成。通过X射线衍射(XRD)研究评价纤维素中微晶的相对分数和尺寸。使用粗纤维素酶Fromb糖化的生物质。在淡水和海水媒体中使用生物乙醇的Oceanisediminswas Usingsaccharomyces Cerevisiagimim 3570和Candida Shataencim 3500.使用固定的酵母的联盟在淡水中用于糖化稻草的最大发酵效率(45.74%)。通过固定化,在海水系统中记录了最高发酵效率(36.69%)。酿酒酵母。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号