首页> 外文期刊>Biofabrication >Bioprinted osteon-like scaffolds enhance in vivo neovascularization
【24h】

Bioprinted osteon-like scaffolds enhance in vivo neovascularization

机译:Bioplinted Osteon的脚手架增强了体内新生血管

获取原文
获取原文并翻译 | 示例
       

摘要

Bone tissue engineers are facing a daunting challenge when attempting to fabricate bigger constructs intended for use in the treatment of large bone defects, which is the vascularization of the graft. Cell-based approaches and, in particular, the use of in vitro coculture of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) has been one of the most explored options. We present in this paper an alternative method to mimic the spatial pattern of HUVECs and hMSCs found in native osteons based on the use of extrusion-based 3D bioprinting (3DP). We developed a 3DP biphasic osteon-like scaffold, containing two separate osteogenic and vasculogenic cell populations encapsulated in a fibrin bioink in order to improve neovascularization. To this end, we optimized the fibrin bioink to improve the resolution of printed strands and ensure a reproducible printing process; the influence of printing parameters on extruded strand diameter and cell survival was also investigated. The mechanical strength of the construct was improved by co-printing the fibrin bioink along a supporting PCL carrier scaffold. Compressive mechanical testing showed improved mechanical properties with an average compressive modulus of 131 +/- 23 MPa, which falls in the range of cortical bone. HUVEC and hMSC laden fibrin hydrogels were printed in osteon-like patterns and cultured in vitro. A significant increase in gene expression of angiogenic markers was observed for the biomimetic scaffolds. Finally, biphasic scaffolds were implanted subcutaneously in rats. Histological analysis of explanted scaffolds showed a significant increase in the number of blood vessels per area in the 3D printed osteon-like scaffolds. The utilization of these scaffolds in constructing biomimetic osteons for bone regeneration demonstrated a promising capacity to improve neovascularization of the construct. These results indicates that proper cell orientation and scaffold design could play a critical role in neovascularization.
机译:骨组织工程师在试图制造用于治疗大骨缺陷的较大的骨缺陷时,骨组织工程师面临着令人生畏的挑战,这是移植物的血管化。基于细胞的方法,特别是使用人脐静脉内皮细胞(HUVEC)和人间充质干细胞(HMSCs)的体外共培养的使用是最探索的选择之一。我们本文介绍了基于使用基于挤出的3D生物监测(3DP)的天然骨质内发现的Huvecs和HMSCs的空间模式的替代方法。我们开发了一种3DP双相骨升起的支架,其含有两种单独的成骨和血管原性细胞群,包裹在纤维蛋白生物链中,以改善新生血管。为此,我们优化了纤维蛋白生物链,以改善印刷股的分辨率,确保可再现的印刷过程;还研究了印刷参数对挤出链直径和细胞存活的影响。通过沿支撑PCL载体支架共同印刷纤维蛋白生物蛋白,改善了构建体的机械强度。压缩机械测试显示出改善的机械性能,平均压缩模量为131 +/- 23MPa,其落入皮质骨的范围内。 HUVEC和HMSC载带纤维蛋白水凝胶在异膜样图案中印刷,并在体外培养。观察到血管生成标记物的基因表达的显着增加,用于仿生支架。最后,皮下支架被皮下植入大鼠。脱盐支架的组织学分析表明,3D印刷的Osteon的支架中每个区域的血管数量显着增加。这些支架在构建用于骨再生的仿生骨膜方面的利用表明了改善构建体的新血管形成的有希望的能力。这些结果表明,适当的细胞取向和支架设计可以在新生血管中发挥关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号