首页> 外文期刊>Biomedical materials >Differential in vitro degradation and protein adhesion behaviour of spark plasma sintering fabricated magnesium-based temporary orthopaedic implant in serum and simulated body fluid
【24h】

Differential in vitro degradation and protein adhesion behaviour of spark plasma sintering fabricated magnesium-based temporary orthopaedic implant in serum and simulated body fluid

机译:火花等离子体烧结的差异体外降解和蛋白质粘附性能制造血清中的镁基临时整形植入物和模拟体液

获取原文
获取原文并翻译 | 示例
           

摘要

The interaction of proteins with implantable metallic surfaces has a great influence on the bioactivity and biodegradation of orthopaedic implants. Initial osseointegration is known to be critical for the long term success of orthopaedic implants. The surface properties of the implant and electrochemical milieu of the surrounding solution such as electrostatic, hydrophobic, and hydrogen bonding interactions significantly modulate protein adsorption by implants. Magnesium (Mg) is considered to improve the adhesion of osteoblasts via ligand binding of the integrin receptors. Mg-based composites, reinforced with hydroxyapatite (HA), are potential candidates for temporary orthopaedic implants. However, their clinical translation requires enhanced degradation resistance in physiological environment so that it is in sync with the healing rate of the bone. The present study deals with the protein adsorption characteristics and degradation behaviour of Mg-HA-based biodegradable implants. Quantitative analysis of apatite inducing ability of composites was evaluated in terms of mass gain in simulated body fluid (SBF) as well as in foetal bovine serum (FBS), by an in vitro immersion study. Incorporation of 5 and 15 wt% HA to Mg-3Zn improved apatite formation up to 35% and 66%, respectively, after 14 days of immersion in SBF. Compared to FBS, SBF is found to be significantly more effective in precipitating apatite on a Mg-HA surface. However, FBS offered more corrosion resistance to Mg-HA than SBF did, as evident from the significant differences in the protein adhesion capabilities of the composite surface when incubated separately in these two mediums. The addition of 15 wt% HA enhanced the protein adsorption capability by similar to 35%. These studies highlight the possibility of modulating the degradation and bioactivity of Mg-based composite by tailoring the composition of HA. These findings, in turn, warrant the suitability of Mg-HA composite in orthopaedic application.
机译:蛋白质与可植入金属表面的相互作用对整形外科植入物的生物活性和生物降解具有很大影响。已知初始骨整合对于骨科植入物的长期成功至关重要。静电,疏水和氢键相互作用如静电,疏水和氢键相互作用的植入物和电化学环境的表面性质显着调节植入物的蛋白质吸附。认为镁(Mg)通过联系受体的配体结合改善成骨细胞的粘附性。用羟基磷灰石(HA)加固的基于Mg基复合材料是临时整形植入物的潜在候选者。然而,它们的临床翻译需要增强生理环境中的降解抗性,因此它与骨骼的愈合率同步。本研究涉及Mg-HA基可生物降解植入物的蛋白质吸附特性和降解行为。通过体外浸没研究,根据模拟体液(SBF)以及胎牛血清(FBS)中的质量增益来评价复合材料的磷灰石诱导能力的定量分析。将5和15wt%HA掺入Mg-3Zn,在SBF浸泡14天后,分别在浸泡14天后分别改善磷灰石形成,分别高达35%和66%。与FBS相比,发现SBF在沉淀磷灰石上在Mg-HA表面上显着更有效。然而,FBS为Mg-HA提供了比SBF更多的腐蚀性抗腐蚀性,从而从复合表面分别在这两种培养基中分别孵育时的蛋白质粘附能力的显着差异显然。加入15wt%HA通过类似于35%增强蛋白质吸附能力。这些研究通过定制HA的组成来突出显示Mg基复合材料的降解和生物活性的可能性。反过来,这些调查结果要求骨科应用中Mg-HA复合材料的适用性。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号