首页> 外文期刊>Acta Crystallographica, Section B. Structural Science >Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D)
【24h】

Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D)

机译:利用色散校正密度泛函理论(DFT-D)从粉末衍射数据验证分子晶体结构

获取原文
获取原文并翻译 | 示例
           

摘要

In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 ? for SX structures to 0.35 ? for XRPD structures; the grey area must be extended from 0.30 to 0.40 ?. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom.
机译:2010年,我们使用色散校正密度泛函理论(DFT-D)对225个高质量单晶(SX)结构进行了能量最小化,以建立定量基准。对于当前的论文,使用DFT-D将X射线粉末衍射(XRPD)数据确定并发布在IUCr期刊上的215种有机晶体结构进行了能量最小化,并与SX基准进行了比较。平均而言,XRPD结构的原子坐标精确度稍差,确实会导致能量最小化时系统均方根的均方根笛卡尔位移(RMSCD)值比SX结构更高,但RMSCD值仍然是检测结构的好指标。仔细看看。正确结构的RMSCD上限必须从0.25?对于SX结构为0.35?用于XRPD结构;灰色区域必须从0.30扩展到0.40?。基于能量最小化,对三个结构进行了改进,以提供更精确的原子坐标。对于六个结构,我们的计算提供了H原子的缺失位置,对于五个结构,他们提供了一些H原子的校正位置。对于非H原子,七个晶体结构显示出较小的误差。对于五个结构,能量最小化表明空间组对称性更高。对于225个SX结构,在最小化能量时观察到的唯一偏差是三个次要的H原子相关问题。首选方向是造成问题的最重要原因。首选方向校正是修改实验数据以适合模型的唯一校正。我们得出的结论是,根据IUCr期刊上公布的粉末衍射数据确定的分子晶体结构具有很高的质量,其中不到4%的非H原子存在错误。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号