...
首页> 外文期刊>Acta biomaterialia >Modulation of the gene expression of annulus fibrosus-derived stem cells using poly(ether carbonate urethane)urea scaffolds of tunable elasticity
【24h】

Modulation of the gene expression of annulus fibrosus-derived stem cells using poly(ether carbonate urethane)urea scaffolds of tunable elasticity

机译:可调弹性聚醚碳酸酯尿素尿素支架对纤维环干细胞基因表达的调控

获取原文
获取原文并翻译 | 示例

摘要

Annulus fibrosus (AF) injuries commonly lead to substantial deterioration of the intervertebral disc (IVD). While tissue engineering has recently evolved into a promising approach for AF regeneration, it remains challenging due to the cellular, biochemical, and mechanical heterogeneity of AF tissue. In this study, we explored the use of AF-derived stem cells (AFSCs) to achieve diversified differentiation of cells for AF tissue engineering. Since the differentiation of stem cells relies significantly on the elasticity of the substrate, we synthesized a series of biodegradable poly(ether carbonate urethane)urea (PECUU) materials whose elasticity approximated that of native AF tissue. When AFSCs were cultured on electrospun PECUU fibrous scaffolds, the gene expression of collagen-I in the cells increased with the elasticity of scaffold material, whereas the expression of collagen-II and aggrecan genes showed an opposite trend. At the protein level, the content of collagen-I gradually increased with substrate elasticity, while collagen-II and GAG contents decreased. In addition, the cell traction forces (CTFs) of AFSCs gradually decreased with scaffold elasticity. Such substrate elasticity-dependent changes of AFSCs were similar to the gradual transition in the genetic, biochemical, and biomechanical characteristics of cells from inner to outer regions of native AF tissue. Together, findings from this study indicate that AFSCs, depending on the substrate elasticity, have strong tendencies to differentiate into various types of AF-like cells, thereby providing a solid foundation for the tissue engineering applications of AFSCs.
机译:纤维环(AF)损伤通常会导致椎间盘(IVD)严重恶化。尽管组织工程学最近已发展成为一种有希望的房颤再生方法,但由于房颤组织的细胞,生化和机械异质性,它仍然具有挑战性。在这项研究中,我们探索了使用AF衍生干细胞(AFSC)来实现针对AF组织工程的细胞的多样化分化。由于干细胞的分化显着依赖于基质的弹性,我们合成了一系列可生物降解的聚(醚碳酸酯氨基甲酸酯)脲(PECUU)材料,其弹性接近天然AF组织的弹性。当在电纺的PECUU纤维支架上培养AFSC时,细胞中胶原蛋白I的基因表达随支架材料的弹性而增加,而胶原蛋白II和聚集蛋白聚糖基因的表达却呈现相反的趋势。在蛋白质水平上,Ⅰ型胶原蛋白的含量随着底物的弹性逐渐增加,而Ⅱ型胶原蛋白和GAG的含量则下降。此外,AFSCs的细胞牵引力(CTFs)随着支架弹性逐渐降低。 AFSCs的这种依赖于底物弹性的变化类似于从天然AF组织的内部区域到外部区域的细胞的遗传,生化和生物力学特征的逐渐转变。总之,这项研究的结果表明,AFSC取决于基质的弹性,具有很强的分化成各种类型的AF样细胞的趋势,从而为AFSC的组织工程应用提供了坚实的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号