...
首页> 外文期刊>ACM transactions on algorithms >Minimum Makespan Multi-Vehicle Dial-a-Ride
【24h】

Minimum Makespan Multi-Vehicle Dial-a-Ride

机译:最小Makespan多车拨号

获取原文
获取原文并翻译 | 示例

摘要

Dial-a-Ride problems consist of a set V of n vertices in a metric space (denoting travel time between vertices) and a set of m objects represented as source-destination pairs {(s(i), t(i))}(i-1)(m), where each object requires to be moved from its source to destination vertex. In the multi-vehicle Dial-a-Ride problem, there are q vehicles, each having capacity k and where each vehicle j epsilon [q] has its own depot-vertex r(j) epsilon V. A feasible schedule consists of a capacitated route for each vehicle (where vehicle j originates and ends at its depot r(j)) that together move all objects from their sources to destinations. The objective is to find a feasible schedule that minimizes the maximum completion time (i.e., makespan) of vehicles, where the completion time of vehicle j is the time when it returns to its depot r(j) at the end of its route. We study the preemptive version of multi-vehicle Dial-a-Ride, in which an object may be left at intermediate vertices and transported by more than one vehicle, while being moved from source to destination. Our main results are an O(log(3) n)-approximation algorithm for preemptive multi-vehicle Dial-a-Ride, and an improved O(log t)-approximation for its special case when there is no capacity constraint (here t <= n is the number of distinct depot-vertices). There is an Omega(log(1/4-epsilon) n) hardness of approximation known even for single vehicle capacitated Dial-a-Ride [Gortz 2006]. For uncapacitated multi-vehicle Dial-a-Ride, we show that there are instances when natural lower bounds (used in our algorithm) are (Omega) over tilde (log t) factor away from the optimum. We also consider the special class of metrics induced by graphs excluding any fixed minor (e.g., planar metrics). In this case, we obtain improved guarantees of O(log(2) n) for capacitated multi-vehicle Dial-a-Ride, and O(1) for the uncapacitated problem.
机译:Dial-a-Ride问题由度量空间中n个顶点的集合V(表示顶点之间的传播时间)和表示为源-目的地对{(s(i),t(i))}的m个对象组成。 (i-1)(m),其中每个对象都需要从其源顶点移动到目标顶点。在多车穿越问题中,有q辆车,每辆车的容量为k,每辆车j epsilon [q]有其自己的仓库顶点r(j)epsilonV。可行的时间表包括每个车辆的路线(车辆j的始发点和终点站r(j)的终点),将所有对象一起从其源移动到目的地。目的是找到使车辆的最大完成时间(即,完成时间)最小化的可行时间表,其中,车辆j的完成时间是其在路线的尽头返回其仓库r(j)的时间。我们研究了多车乘骑的抢先版本,其中一个对象可能会留在中间顶点并由多辆车运输,同时又从源头移到目的地。我们的主要结果是一种用于抢先多车Dial-a-Ride的O(log(3)n)逼近算法,以及在没有容量限制的情况下(在这里t为<= n是不同的仓库顶点数)。即使对于单载具容量的Dial-a-Ride,也具有近似的Omega(log(1 /4-ε)n)硬度[Gortz 2006]。对于无能力驾驶的多用途Dial-a-Ride,我们显示了在某些情况下,自然下限(在我们的算法中使用的)下限(Omega)超过了代字号(log t)而不是最优值。我们还考虑了由图引起的特殊类别的指标,不包括任何固定的次要指标(例如,平面指标)。在这种情况下,我们获得了针对有能力的多车辆Dial-a-Ride的O(log(2)n)和针对无能力的问题的O(1)的改进保证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号