首页> 外文期刊>RSC Advances >Natural-gel derived, N-doped, ordered and interconnected 1D nanocarbon threads as efficient supercapacitor electrode materials
【24h】

Natural-gel derived, N-doped, ordered and interconnected 1D nanocarbon threads as efficient supercapacitor electrode materials

机译:天然凝胶衍生,N-掺杂,有序和互连的1D纳米碳螺纹,如高效的超级电容器电极材料

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A natural hydrogel has been successfully templated into a nitrogen doped interconnected 1D nanostructure by a hard templating method using an SBA-15 template. With urea as the nitrogen doping agent a high nitrogen percentage of 7.0 at% was achieved. Urea was seen to play a role in increasing the order and compactness of the final carbon product. By snipping the carbon into nano 1D threads a fairly high surface area up to 837 m(2) g(-1) was achieved with a high density of mesopores characterized by a pore size of 4-5 nm and a pore volume of 0.87-0.89 cm(3) g(-1). The mesoporous architecture was channel type with an average width of similar to 4 nm. With these characteristics the material represents an architecture that is adequate for high power supercapacitor electrode applications. Indeed, it was seen to deliver a capacity of 285 F g(-1) at a current density of 1 A g(-1) with only a small percentage loss in this initial capacitance value at a higher current density of 10 A g(-1) (210 F g(-1)). These values suggest a high capacity retention of 74% up to 10 A g(-1) and 62% capacitance retention (176 F g(-1)) at an extremely high current density of 40 A g(-1). The cycling stability of the material is also commendable as 96% capacity retention is recorded after 2000 charging-discharging cycles implemented at a high current density of 10 A g(-1).
机译:使用SBA-15模板,通过硬模板方法成功地将天然水凝胶成功地涂成氮掺杂互连的1D纳米结构。用尿素作为氮掺杂剂,实现了7.0at%的高氮百分比。尿素被认为在增加最终碳产品的顺序和紧凑性时发挥作用。通过将碳进入纳米1D螺纹,通过高密度的孔径为4-5nm,孔体积为0.87 - 的孔径为纳米1D螺纹,相当高的表面积,其具有高达837m(2 )g(-1)的高达837m(-1),其特征在于4-5nm, 0.89厘米(3)克(-1)。中孔架构是频道型,平均宽度与4nm相似。利用这些特性,材料代表了适用于高功率超级电容器电极应用的架构。实际上,它被认为以1Ag(-1)的电流密度提供285f g(-1)的容量,并且在该初始电容值中仅小百分比损耗,在10 a g的较高电流密度( -1)(210 f g(-1))。这些值表明高容量保持高达10Ag(-1)和62%电容保持(176V(-1)),其极高的40Ag(-1)。材料的循环稳定性也可称为96%容量保留在2000次充电放电循环以10Ag(-1)的高电流密度的充电排出循环中记录。

著录项

  • 来源
    《RSC Advances》 |2015年第63期|共10页
  • 作者单位

    Natl Chem Lab CSIR NCL Phys &

    Mat Chem Div Ctr Excellence Solar Energy Pune 411008 Maharashtra India;

    Natl Chem Lab CSIR NCL Phys &

    Mat Chem Div Ctr Excellence Solar Energy Pune 411008 Maharashtra India;

    Univ Mumbai Dept Phys Bombay 400098 Maharashtra India;

    Univ Mumbai Dept Phys Bombay 400098 Maharashtra India;

    Natl Chem Lab CSIR NCL Phys &

    Mat Chem Div Ctr Excellence Solar Energy Pune 411008 Maharashtra India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号