首页> 外文期刊>Acta biomaterialia >Effects of protein molecular weight on the intrinsic material properties and release kinetics of wet spun polymeric microfiber delivery systems
【24h】

Effects of protein molecular weight on the intrinsic material properties and release kinetics of wet spun polymeric microfiber delivery systems

机译:蛋白质分子量对湿纺聚合物超细纤维传输系统固有材料性能和释放动力学的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Wet spun microfibers have great potential for the design of multifunctional controlled release scaffolds. Understanding aspects of drug delivery and mechanical strength, specific to protein molecular weight, may aid in the optimization and development of wet spun fiber platforms. This study investigated the intrinsic material properties and release kinetics of poly(l-lactic acid) (PLLA) and poly(lactic-co-glycolic acid) (PLGA) wet spun microfibers encapsulating proteins with varying molecular weights. A cryogenic emulsion technique developed in our laboratory was used to encapsulate insulin (5.8 kDa), lysozyme (14.3 kDa) and bovine serum albumin (BSA, 66.0 kDa) within wet spun microfibers (~100 μm). Protein loading was found to significantly influence mechanical strength and drug release kinetics of PLGA and PLLA microfibers in a molecular-weight-dependent manner. BSA encapsulation resulted in the most significant decrease in strength and ductility for both PLGA and PLLA microfibers. Interestingly, BSA-loaded PLGA microfibers had a twofold increase (8 ± 2 MPa to 16 ± 1 MPa) in tensile strength and a fourfold increase (3 ± 1% to 12 ± 6%) in elongation until failure in comparison to PLLA microfibers. PLGA and PLLA microfibers exhibited prolonged protein release up to 63 days in vitro. Further analysis with the Korsmeyer-Peppas kinetic model determined that the mechanism of protein release was dependent on Fickian diffusion. These results emphasize the critical role protein molecular weight has on the properties of wet spun filaments, highlighting the importance of designing small molecular analogues to replace growth factors with large molecular weights.
机译:湿纺超细纤维在设计多功能控制释放支架方面具有巨大潜力。了解蛋白质分子量所特有的药物输送和机械强度方面,可能有助于优化和开发湿纺纤维平台。这项研究调查了聚(l-乳酸)(PLLA)和聚(乳酸-co-乙醇酸)(PLGA)湿纺微纤维的内在材料特性和释放动力学,这些微纤维包裹着分子量不同的蛋白质。我们实验室开发的低温乳液技术将胰岛素(5.8 kDa),溶菌酶(14.3 kDa)和牛血清白蛋白(BSA,66.0 kDa)包裹在湿纺超细纤维(〜100μm)中。发现蛋白质负载以分子量依赖性方式显着影响PLGA和PLLA超细纤维的机械强度和药物释放动力学。 BSA封装导致PLGA和PLLA超细纤维的强度和延展性最显着下降。有趣的是,与PLLA超细纤维相比,负载BSA的PLGA超细纤维的拉伸强度增加了两倍(从8±2 MPa到16±1 MPa),而伸长率则增加了三倍(从3±1%到12±6%)。 PLGA和PLLA超细纤维在体外的蛋白质释放时间长达63天。用Korsmeyer-Peppas动力学模型进行的进一步分析确定了蛋白质释放的机制取决于Fickian扩散。这些结果强调了蛋白质分子量对湿纺长丝特性的关键作用,强调了设计小分子类似物以取代大分子量生长因子的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号