首页> 外文期刊>Acta biomaterialia >Modular peptides from the thermoplastic squid sucker ring teeth form amyloid-like cross-beta supramolecular networks
【24h】

Modular peptides from the thermoplastic squid sucker ring teeth form amyloid-like cross-beta supramolecular networks

机译:来自热塑性鱿鱼抽油环齿的模块肽形成淀粉样的跨β超分子网络

获取原文
获取原文并翻译 | 示例
           

摘要

The hard sucker ring teeth (SRT) from decapodiforme cephalopods, which are located inside the sucker cups lining the arms and tentacles of these species, have recently emerged as a unique model structure for biomimetic structural biopolymers. SRT are entirely composed of modular, block co-polymer-like proteins that self-assemble into a large supramolecular network. In order to unveil the molecular principles behind SRT's self-assembly and robustness, we describe a combinatorial screening assay that maps the molecular-scale interactions between the most abundant modular peptide blocks of suckerin proteins. By selecting prominent interaction hotspots from this assay, we identified four peptides that exhibited the strongest homo-peptidic interactions, and conducted further in-depth biophysical characterizations complemented by molecular dynamic (MD) simulations to investigate the nature of these interactions. Circular Dichroism (CD) revealed conformations that transitioned from semi-extended poly-proline II (PII) towards beta-sheet structure. The peptides spontaneously self-assembled into microfibers enriched with cross beta-structures, as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR) and Congo red staining. Nuclear Magnetic Resonance (NMR) experiments identified the residues involved in the hydrogen-bonded network and demonstrated that these self-assembled,beta-sheet-based fibers exhibit high protection factors that bear resemblance to amyloids. The high stability of the beta-sheet network and an amyloid-like model of fibril assembly were supported by MD simulations. The work sheds light on how Nature has evolved modular sequence design for the self-assembly of mechanically robust functional materials, and expands our biomolecular toolkit to prepare load-bearing biomaterials from protein-based block co-polymers and self-assembled peptides.
机译:来自钩端足类头足类的硬吸盘齿(SRT)位于仿生结构的臂和触手的吸盘内,最近已成为仿生结构生物聚合物的独特模型结构。 SRT完全由模块化,嵌段共聚物样蛋白组成,这些蛋白自组装成一个大型超分子网络。为了揭示SRT自组装和坚固性背后的分子原理,我们描述了一种组合筛选测定法,该测定法绘制了可逆蛋白的最丰富的模块化肽段之间的分子尺度相互作用。通过从该测定中选择突出的相互作用热点,我们鉴定了表现出最强的同肽相互作用的四种肽,并进行了进一步的深入生物物理表征,并辅以分子动力学(MD)模拟来研究这些相互作用的性质。圆二色性(CD)揭示了从半延伸的聚脯氨酸II(PII)过渡到β-折叠结构的构象。傅立叶变换红外光谱(FTIR)和刚果红染色证明,这些肽自发地自组装成富含交叉β结构的微纤维。核磁共振(NMR)实验确定了氢键网络中涉及的残基,并证明这些自组装的基于β-薄片的纤维表现出了高度保护因子,与淀粉样蛋白相似。 MD模拟支持β-sheet网络的高稳定性和原纤维组装的淀粉样蛋白模型。这项工作揭示了自然界如何发展用于机械组装功能强大的材料的自组装的模块化序列设计,并扩展了我们的生物分子工具包,以从基于蛋白质的嵌段共聚物和自组装肽制备承重的生物材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号