...
首页> 外文期刊>Acta biomaterialia >Prediction of equibiaxial loading stress in collagen-based extracellular matrix using a three-dimensional unit cell model
【24h】

Prediction of equibiaxial loading stress in collagen-based extracellular matrix using a three-dimensional unit cell model

机译:使用三维晶胞模型预测胶原基细胞外基质中的等双轴加载应力

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Mechanical signals are important factors in determining cell fate. Therefore, insights as to how mechanical signals are transferred between the cell and its surrounding three-dimensional collagen fibril network will provide a basis for designing the optimum extracellular matrix (ECM) microenvironment for tissue regeneration. Previously we described a cellular solid model to predict fibril microstructure-mechanical relationships of reconstituted collagen matrices due to unidirectional loads (Acta Biomater 2010;6:1471-86). The model consisted of representative volume elements made up of an interconnected network of flexible struts. The present study extends this work by adapting the model to account for microstructural anisotropy of the collagen fibrils and a biaxial loading environment. The model was calibrated based on uniaxial tensile data and used to predict the equibiaxial tensile stress-stretch relationship. Modifications to the model significantly improved its predictive capacity for equibiaxial loading data. With a comparable fibril length (model 5.9-8 ??m, measured 7.5 ??m) and appropriate fibril anisotropy the anisotropic model provides a better representation of the collagen fibril microstructure. Such models are important tools for tissue engineering because they facilitate prediction of microstructure-mechanical relationships for collagen matrices over a wide range of microstructures and provide a framework for predicting cell-ECM interactions. ? 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
机译:机械信号是决定细胞命运的重要因素。因此,有关机械信号如何在细胞及其周围的三维胶原纤维网络之间传递的见解将为设计用于组织再生的最佳细胞外基质(ECM)微环境提供基础。以前,我们描述了一种细胞固体模型,用于预测由于单向载荷而导致的重组胶原蛋白基质的原纤维微结构-机械关系(Acta Biomater 2010; 6:1471-86)。该模型由具有代表性的体积元素组成,这些元素由柔性支柱的互连网络组成。本研究通过使模型适应胶原纤维的微观结构各向异性和双轴加载环境来扩展这项工作。该模型基于单轴拉伸数据进行了校准,并用于预测等双轴拉伸应力-拉伸关系。对模型的修改显着提高了其对等双轴荷载数据的预测能力。在具有可比较的原纤维长度(模型为5.9-8?m,测量为7.5?m)和适当的原纤维各向异性的情况下,各向异性模型可以更好地表示胶原原纤维的微观结构。这样的模型是组织工程的重要工具,因为它们有助于在广泛的微结构上预测胶原蛋白基质的微结构-机械关系,并为预测细胞-ECM相互作用提供框架。 ? 2012年Acta Materialia Inc.由Elsevier Ltd.发行。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号