首页> 外文期刊>Acta biomaterialia >The impact of critical point drying with liquid carbon dioxide on collagen-hydroxyapatite composite scaffolds.
【24h】

The impact of critical point drying with liquid carbon dioxide on collagen-hydroxyapatite composite scaffolds.

机译:液态二氧化碳临界点干燥对胶原蛋白-羟基磷灰石复合支架的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

Collagen-hydroxyapatite composites for bone tissue engineering are usually made by freezing an aqueous dispersion of these components and then freeze-drying. This method creates a foamed matrix which may not be optimum for growing cell colonies larger than a few hundred micrometres due to the limited diffusion of nutrients and oxygen, and the limited removal of waste metabolites. Incorporating a network of microchannels in the interior of the scaffold which may permit the flow of nutrient-rich media has been proposed as a method to overcome these diffusion constraints. A novel three-dimensional printing and critical point drying technique previously used to make collagen scaffolds has been modified to create collagen-hydroxyapatite scaffolds. This study investigates the properties of collagen and collagen-hydroxyapatite scaffolds and whether subjecting collagen and hydroxyapatite to critical point drying with liquid carbon dioxide results in any changes to the individual components. Specifically, the hydroxyapatite component was characterized before and after processing using wavelength-dispersive X-ray spectroscopy, X-ray diffraction and infrared spectroscopy. Critical point drying did not induce elemental, crystallographic or molecular changes in the hydroxyapatite. The quaternary structure of collagen was characterized using transmission electron microscopy and the quarter-staggered array characteristic of native collagen remained after processing. Microstructural characterization of the composites using scanning electron microscopy showed the hydroxyapatite particles were mechanically interlocked in the collagen matrix. The in vitro biological response of MG63 osteogenic cells to the composite scaffolds were characterized using the Alamar Blue, PicoGreen, alkaline phosphate and Live/Dead assays, and revealed that the critical point dried scaffolds were non-cytotoxic.
机译:用于骨组织工程的胶原蛋白-羟基磷灰石复合材料通常是通过将这些成分的水分散液冷冻然后冷冻干燥而制成的。该方法产生的泡沫基质由于营养物和氧气的扩散有限以及废物代谢产物的去除有限,对于生长大于几百微米的细胞集落而言可能不是最佳的。已经提出了在支架的内部结合微通道的网络作为克服这些扩散约束的方法,该微通道的网络可以允许富营养的培养基的流动。以前用于制造胶原蛋白支架的新型三维打印和临界点干燥技术已经过改进,可以制成胶原蛋白-羟基磷灰石支架。这项研究调查了胶原蛋白和胶原蛋白-羟基磷灰石支架的特性,以及是否使用液态二氧化碳对胶原蛋白和羟基磷灰石进行临界点干燥是否会导致各个成分的变化。具体地,使用波长色散X射线光谱法,X射线衍射和红外光谱法在加工前后表征羟基磷灰石组分。临界点干燥不引起羟基磷灰石的元素,晶体学或分子变化。使用透射电子显微镜表征胶原的四级结构,并且在加工后保留天然胶原的四分之一交错阵列特征。使用扫描电子显微镜对复合材料的微观结构表征表明,羟基磷灰石颗粒在胶原基质中机械互锁。 MG63成骨细胞对复合支架的体外生物学反应使用Alamar Blue,PicoGreen,碱性磷酸盐和Live / Dead分析进行了表征,并表明临界点干燥的支架无细胞毒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号