...
首页> 外文期刊>Acta biomaterialia >Role of the nanoscale interfacial arrangement in mechanical strength of tropocollagen-hydroxyapatite-based hard biomaterials.
【24h】

Role of the nanoscale interfacial arrangement in mechanical strength of tropocollagen-hydroxyapatite-based hard biomaterials.

机译:纳米级界面排列在基于对胶原蛋白-羟基磷灰石的硬生物材料的机械强度中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Nanoscale interfacial interactions between a polypeptide (e.g. tropocollagen (TC)) phase and a mineral (e.g. hydroxyapatite (HAP), aragonite) phase is a strong determinant of the strength of hard biological materials such as bone, dentin and nacre. This work presents a mechanistic understanding of such interfacial interactions by examining idealized TC and HAP interfacial systems. For this purpose, three-dimensional molecular dynamics analyses of tensile and compressive failure in two structurally distinct TC-HAP supercells with TC molecules arranged either along or perpendicular to a chosen HAP surface are performed. Analyses point out that the peak interfacial strength for failure results when the load is applied in the direction of TC molecules aligned along the HAP surface such that the contact area between the TC and HAP phases is at a maximum. Such an alignment also leads to the localization of peak stress over a larger length scale resulting in higher fracture strength. The addition of water is found to invariably cause an increase in the mechanical strength. Overall, analyses point out that the relative alignment of TC molecules with respect to the HAP mineral surface such that the contact area is maximal, the optimal direction of applied loading with respect to the TC-HAP orientation and the increase in strength in a hydrated environment can be important factors that contribute to making nanoscale staggered arrangement a preferred structural configuration in biomaterials.
机译:多肽(例如对流胶原(TC))相和矿物质(例如羟基磷灰石(HAP),文石)相之间的纳米级界面相互作用是硬生物材料(例如骨骼,牙本质和珍珠质)强度的重要决定因素。通过检查理想的TC和HAP界面系统,这项工作提出了对此类界面相互作用的机械理解。为此,在两个结构不同的TC-HAP超级电池中进行了三维拉伸拉伸和压缩破坏的分子动力学分析,其中TC分子沿选定的HAP表面排列或垂直。分析指出,当沿沿HAP表面排列的TC分子方向施加载荷时,会导致破坏的最大界面强度,从而TC和HAP相之间的接触面积最大。这样的对准还导致峰值应力在更大的长度尺度上局部化,从而导致更高的断裂强度。发现添加水总是会引起机械强度的增加。总体而言,分析指出,TC分子相对于HAP矿物表面的相对排列使得接触面积最大,相对于TC-HAP取向的最佳施加载荷方向以及在水合环境中强度的增加可能是促使纳米级交错排列成为生物材料中优选结构构型的重要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号