首页> 外文期刊>Acta Botanica Gallica: Bulletin de la Societe Botanique de France >Analysing deforestation by remote sensing coupled with structural equation models: Example of the cloud forest of mount Oku (Cameroon) [Analyse de la dynamique de déforestation par télé détection couplée aux modèles d'équations structurales: Exemple de la forêt néphéliphile du mont Oku (Cameroun)]
【24h】

Analysing deforestation by remote sensing coupled with structural equation models: Example of the cloud forest of mount Oku (Cameroon) [Analyse de la dynamique de déforestation par télé détection couplée aux modèles d'équations structurales: Exemple de la forêt néphéliphile du mont Oku (Cameroun)]

机译:通过遥感结合结构方程模型分析森林砍伐:奥库山(喀麦隆)的云森林实例[通过遥感结合结构方程模型的森林砍伐的动力学:奥库山(喀麦隆)的中性林森林实例)]

获取原文
获取原文并翻译 | 示例
       

摘要

Habitat destruction and land use change are major causes of biodiversity erosion on Earth, especially in tropical regions. Monitoring studies or even surveys of species and community diversity in changing landscapes or disturbed areas require an assessment of the land cover changes over time. Here, we present a method combining remote sensing and structural equation models (SEM) to describe and analyse landscape dynamics. We focus on the mount Oku as an example, which is a mountain area located in north-west Cameroon. This site hosts the largest remaining tract of Central African cloud forest, a biodiversity hotspot threatened by contemporary land-use changes. Our aim is to characterize land cover changes over the last three decades and to quantify and elucidate the causes of deforestation and forest fragmentation. For this purpose, we integrate several Landsat satellite images taken between 1978 and 2007 in a Geographic Information System (GIS), and compare changes in land-use types. We assess forest fragmentation over this period by comparing the number, the area and the perimeter of forest fragments, and derive a forest fragmentation index. Finally, we quantify the respective effects of natural (altitude, slope) and human (human density, distance to villages) factors on deforestation using SEM. We evidence two periods in the dynamics of the cloud forest cover: a period of intense deforestation (1978-2001), followed by a period of re-afforestation (2001-2007). The forest cover lost 62.1% of its area (12,060 ha) between 1978 and 2001, corresponding to an averaged deforestation rate of 579 ha.yr~(-1). Deforested areas were mainly converted into crop lands (+75.6% between 1978 and 1988), under the pressure of an increasing human density, which was multiplied by 20 between 1921 and 2005 and doubled during the last 18 years. After 2001, the forest cover stabilized with the appearance of numerous small fragments of secondary forest, reflecting the success of the local biodiversity protection programs. Despite this recent progression of the forest cover, the proportion of ancient forest has continuously decreased from 1978 to 2007, indicating that deforestation is still ongoing. In 2007, the forest cover was a mosaic composed of 66% of recent secondary forests (i.e. forests appeared after 1978) and only 34% of ancient forests (i.e. present before 1978). Between 1978 and 2007, the number of forest fragments increased from 2627 to 5183, their average area decreased from 7.4 to 1.8 ha, and perimeter from 912 to 446 m, and the forest fragmentation index increased by 285.7%. Deforestation started from lower altitudes (<2300 m, before 1988) and progressed towards higher altitudes (2100-2900 m) between 1988 and 2001. SEM showed that altitude and slope had a significant negative effect on human density, explaining why the deforestation has been low on steep slopes and/or at higher altitudes. Our study reveals that the last fragments of the primary cloud forest of mount Oku could be definitively lost in the next decades. As tropical primary forests are irreplaceable ecosystems that host numerous endemic species, we recommend (1) to urgently protect the last remnants of ancient forest for their biological value; clear-cuts, grazing in forest interior and fires should be excluded from these areas, and (2) to extend secondary forests around ancient forest fragments so that they can act as a protective buffer and be managed as community forests and used for hunting and logging activities.
机译:栖息地的破坏和土地利用的变化是地球上生物多样性受到侵蚀的主要原因,特别是在热带地区。监测研究,甚至调查不断变化的景观或受干扰地区的物种和社区多样性,都需要评估土地覆盖物随时间的变化。在这里,我们提出了一种结合遥感和结构方程模型(SEM)来描述和分析景观动力学的方法。我们以奥库山为例,它是喀麦隆西北部的一个山区。该地点是中非云雾林剩余面积最大的地区,这是受当代土地利用变化威胁的生物多样性热点。我们的目标是表征过去三十年的土地覆盖变化,并量化和阐明森林砍伐和森林破碎的原因。为此,我们将1978年至2007年之间拍摄的若干Landsat卫星图像整合到一个地理信息系统(GIS)中,并比较了土地利用类型的变化。我们通过比较森林碎片的数量,面积和周长来评估这一时期的森林碎片,并得出森林碎片指数。最后,我们使用SEM量化了自然因素(海拔,坡度)和人为因素(人类密度,到村庄的距离)对森林砍伐的影响。我们证明了云雾森林覆盖的动态有两个时期:一个是严重的森林砍伐时期(1978-2001年),另一个是重新造林时期(2001-2007年)。在1978年至2001年之间,森林覆盖面积减少了62.1%(12,060公顷),相当于579公顷(-1)的平均毁林率。在人口密度上升的压力下,砍伐森林的地区主要转变为耕地(1978年至1988年间增长了75.6%),人口密度在1921年至2005年间增长了20倍,在过去18年间翻了一番。 2001年之后,森林覆盖率趋于稳定,出现了许多次生森林小碎片,这反映了当地生物多样性保护计划的成功。尽管最近森林覆盖率有所提高,但从1978年到2007年,古代森林的比例一直在下降,这表明森林砍伐仍在继续。在2007年,森林覆盖率是由66%的近代次生林(即1978年后出现的森林)和34%的古林(即1978年之前的森林)组成的马赛克。 1978年至2007年之间,森林碎片的数量从2627个增加到5183个,平均面积从7.4个减少到1.8公顷,周长从912个增加到446 m,森林碎片指数增加了285.7%。砍伐森林是从较低的海拔高度(<2300 m,1988年之前)开始的,并在1988年至2001年间逐渐向较高的海拔高度(2100-2900 m)发展。SEM显示,海拔和坡度对人的密度有显着的负面影响,这解释了为什么造成森林砍伐在陡峭的山坡上和/或在较高的海拔上较低。我们的研究表明,在接下来的几十年中,奥库山主要云林的最后碎片可能会最终丢失。由于热带原始森林是拥有众多特有物种的不可替代的生态系统,因此我们建议(1)紧急保护古代森林的最后残余物的生物学价值;这些地区应避免砍伐,砍伐森林,放牧和生火,以及(2)将次生林扩展到古老的森林碎片周围,以便它们可以作为保护性缓冲区并作为社区森林进行管理并用于狩猎和伐木活动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号