首页> 外文期刊>AAPG Bulletin >Hydrogen sulfide formation, fate, and behavior in anhydrite-sealed carbonate gas reservoirs: A three-dimensional reactive mass transport modeling approach
【24h】

Hydrogen sulfide formation, fate, and behavior in anhydrite-sealed carbonate gas reservoirs: A three-dimensional reactive mass transport modeling approach

机译:硬石膏密封的碳酸盐气储层中硫化氢的形成,结局及行为:三维反应性传质建模方法

获取原文
获取原文并翻译 | 示例
       

摘要

A novel hydrogeochemical modeling approach is developed to unravel thermochemical sulfate reduction (TSR) in hydrocarbon reservoirs. Our numerical model couples a web of interconnected hydrogeochemical reactions to three-dimensional (3-D) and reservoir-wide diffusive mass transport. Our modeling approach simulates a semigeneric gas reservoir sealed by anhydrite. The calculated diagenetic processes fit the observations in reservoirs affected by TSR: formation of water, precipitation of calcite, metal (di-)sulfides, and elemental sulfur as replacements of dissolved anhydrite at the expense of CH4(g), as well as formation of hydrogen sulfide (H2S). By varying input parameters, the crucial factors controlling TSR have been identified. Our results highlight that reservoir-wide diffusive mass transport is one prerequisite for TSR. An increase in the rate constant of abiotic sulfate reduction (ASR) and in diffusive mass fluxes, as well as lack of precursor minerals for metal (di-)sulfide precipitation, can increase the souring intensity and accelerate H2S outgassing. In contrast, precipitation of elemental sulfur, which is stable according to the chemical thermodynamics, weakens H2S formation. Our modeling shows that TSR is complex and cannot be represented by the single reaction ASR and by simple correlations between the rate constant of ASR and the H2S gas content. The application of 3-D reactive transport modeling presented here, despite its semi generic nature, provides a good example of how such an approach can be used ahead of drilling. Our modeling helps to investigate TSR in time and space to quantify the mass conversion of all reactants involved within this web and to predict the souring level.
机译:开发了一种新颖的水文地球化学建模方法,以揭示烃类储层中的热化学硫酸盐还原(TSR)。我们的数值模型将相互联系的水文地球化学反应的网络耦合到三维(3-D)和整个储层的扩散质量传输中。我们的建模方法模拟了由硬石膏密封的半一般性气藏。计算得出的成岩过程符合受TSR影响的储层中的观测结果:水形成,方解石沉淀,金属(二)硫化物和元素硫以CH4(g)为代价替代溶解的硬石膏,以及形成了硫化氢(H2S)。通过改变输入参数,已经确定了控制TSR的关键因素。我们的结果表明,整个储层的扩散性物质运输是TSR的前提之一。非生物硫酸盐还原(ASR)和扩散质量通量的速率常数的增加,以及缺乏用于金属(二)硫化物沉淀的前体矿物,可以增加硫化强度并加速H2S脱气。相反,根据化学热力学稳定的元素硫沉淀会削弱H2S的形成。我们的模型表明,TSR很复杂,不能用单一反应ASR以及ASR的速率常数和H2S气体含量之间的简单关联来表示。尽管存在半通用性质,但此处介绍的3-D反应输运模型的应用提供了一个很好的示例,说明了如何在钻井之前使用这种方法。我们的建模有助于调查时空中的TSR,以量化该网中所有反应物的质量转化率并预测酸化水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号